comunicaciones técnicas

serie azul, monografias

INSTITUTO DE INVESTIGACIONES
EN MATEMATICAS ARLICADAS
Y EN HIST EMAS

WNYVERSIDED MAC DAL A 1T B8 DE WE X

.I'-‘-ﬂa'.-\.r". T :_ r-:' r_] -‘l-l .-' -'-J;IF
EM I :E 0 -
H4B-hd-65

1981 Serie Azul: Monografias No. 48.0

MNumal in FORTHAN

0. Introduction and Summary.

P. 'Wynn*

* Profesor Visitante

Recibida: 11 de febrero de 1981,

PREFACE

The library of numerical algorithms, Numal, written In Algol &0, con-
tains many of the refinements of existing numerical methods and the
newly developed computational technlques Introduced by nembers of the
Mathematical Centre at Amsterdam. For hils own use during a sojourn
in North America, the writer supervised & translation of Numal into a
FORTRAMN versfion suiftable for use on a minl-computer, and prepared do-
cumentations supperting thls version; the translation it self was ca-
rried cut almost single-handedly by H.T. Lau. The director of [|MAS
has graciously consented to the Inclusfion of the FORTRAN version af

Numal in the research and development programme of his institute.
This Introductory volume [s followed by further volumes as fo-
Ilows:

1. Dutput subroutines; multi-length integers; double precision and

complex arithmetic: merging and socrting operations.

i. Elementary operations of linear algebra; solutfion of linear egqua-

tions: matrix Inversion: evaluation of determinants.

3. Real matrix elgenvalue-vector determinations; singular value de-

compositions.

4. Linearly stored upper triangular parts of symmetric matrices; matr[

£8s with complex elements.
3. Auxiliary transformations of linear algebra,

6. Hanipulations of polynomials and thelr evaluatlion; transformations

of sarfes,

J.- Humerical salution of mitlial value problems by explicit

and implicit methods; exponentially Fitted methods.

.- Systems of second order differential eguaticons; boundary

value problems.
§.= Mumerical integrationi Fourier serfes.

10,= Approximation of Jacobian matrices; zero Finding algo=

rithms; minimisation; parameter estimation.

fi1.- Special Functions.

L

The writer assumes responsibility for imperfections in

both programmes and documentatfoms; neither |IMAS nor he accepts

responsibility for the conseguences of such imparfections.

neroduction

ganeral acceptance of a mew programming language is opposed by economic and educa-

1 imertia: the translation of an accumulated store of computer programmes from a

sntly used languapge is, over the short term, costly; persons who belong to esta-

% shed groups and communicats in one language are reluctant to express themselves in
,ﬁ- her. However powerful and efficiemt the neéw language may be, these two forces of
dnertis are pffectiva. The adoptiom of a mew language may be facilitated in three ways:
'?' 1y, by amply demonstrating, with referemce to practieal examples, that this lan-
;L"!E is indeed more powerful than others currently used; secondly, by making available
:irhmtenﬁive library of programmes writtem in the new language; thirdly, by producing

W version of this library written in a currently used language in a manner which simu-
Jates, in a necessarily clumsy manmer, some of the constructions of the new language,
?ii thus offers the enterprising individual a practical introduction to its resources
and power.

Although advance to the use of Algol &0 has been generally attained elsewhere, for
Feasons explained above FORTRAN iz still widely uvsed in MNorth America. This language
RIS itcelf in a process of evolution, and in the latest version {see, for example,
@Tainerd W,, Fortran 77, Comm. A&.C.M., 21 {1978) B0A-820) a number of elementary and
®Asily implemented features of Algol 60 have been incerporated; for example, the limits
&0 interval in a DO statement ave no longer reguired to be positive integers: the
#F... THEN... ELSE construction is made availahle; remote blocks, corresponding to
#Rternal procedures in Algol 60, may now be executed. Tentative versions of FORTRAN
f;-IﬂnEHting recursion are also being essayved (see, for example, Arisawa M, and Iuchi
¥!5 Debugging methods in recursive structured FORTRAN, Software practice and experience,
10 (1980) 29-43}. Automatic allecation of auxiliary storage has yet to be ahsorbed into

RTRAN. 1t is, in short, conceivable that by the vear 2050 FORTRAN will have evolved

to a forp closely resembling Algol 60.

This process of evolution may be assisted in the three ways described above.
by, it is the purpose of the following passages to demonstrate the relative supe-
i £y, with regard to requirements imposed by practical use, of Algel 60. Sacondly,
egnsive collection of procedures is already available in the form of NIMAL, the
ieal alpgorithm library comstructed at the Mathematical Centre at Amsterdam, which
fuller and more enlightened use of Algol 60"s resources than that evidenced by
such collecticms, and incorporates methods, particularly those concerning the nu-
1 splution of ordinary and partial differential equations; in advance of those
:illhlﬂ plsewhere [for a systematic treatment of these methods, ses van der Houwen
J., Construction of integration formulas for initial value problems, North Holland
877)). Thirdly, the volumes which follow this introduction contain a FORTRAN version
N which the writer, unable to lay hiz hands upon an efficlient Algol &0 compiler,
g prepared for his own use during & sojourn in North America, and which, in addition

‘'the necessary documentation, contains subroutines directly implementing many of

gol 60's constructions.

Algel 60 and FORTRAN

Practical use imposes certain requiresments upon & programming language; the fol-
Hing headings are ventured as @ basis for later discussion:

Perspicuity: the language should afford a perspicucus presentation of the numerical
ﬁ'-ll being implemented.

Succintness: the constructioms of which a language is capable should permit the
BEription of numerical processes in concise form; in particular, each construction
Buld be capable of use in many contexts.

f iitilitr: it should be possible to implement the strategies directing the course of

?'“‘lﬂiiva computation with ease; in particular, it should be easy to manipulate data

in a manner incurring minimum waste of computer storage.

Eﬂhﬂrgﬂﬂ&: it should be popssible to combine operations between blocks of statements

R edures OT subroutines) without difficulty

sEficiency: it should be possible to lmplement computationally efficient processes
.Eﬂthgpundingly gfficient manner

Fm:

Erational technology

the power of the language should conduce to the rapid development of powerful

Sfficacy: it should be possible to write a programme in such a way that its compe-
1y compiled object programme fiunctions almost as effectively as the corresponding

amme written directly in machine code.

L
It is cledr that the above classifications everlap; nevertheless they may serve
Mhasis for assessing the merit of an algorithmic language. Algel 60 and PORTRAN
Bbe contrasted, with reference to practical examples, in the light of these classl-

Srions.

Perspicuity

Mlew computational methods are being and will be developed continually. The first
firément that any user who wishes to understand what he is doing will impose upon a
phmwie 15 that He should easily see how it works, and how well it works. Algol &0
Bies this requirement in large measure: there is a strong correspondence between
BEica] notation and the statements of the language; the block structure of the
BEEE naturally expresses successive stages of a mathematical argument; the language
BM8tively free from inelegant constraints which both lmpede umderstanding and obstruct
Mplenentation of 2 methematical process upon 4 computery. The absence of apparent
ii e of a FORTRAN programme renders the latter difficult to follow in all but the
les Cases (this remark holds true for numerous other languages; for example APL):
:;’Eiﬂnﬁ of FORTRAN in current use are replete with petty restrictions (for example,

LS and interval in a DO statement must be positive intepers; the lower limit of

E Teference integers is always 1, and so on; agsin other languages are deficient in

w

this respect; for example, the version of PASCAL now in current use requires that the
interval in a for statement must be *]1, & one-dimensional array whose name features in
the parameter list of a procedure must have declared lenpth agreeing with the actual

array whose name replaces that of the declared array upon call, and =o on),

=

Z2.2. DSuccintness

One important consequence of constructional power in any language 13 that meanings
may be expressed in concise form. Individual programmes writteén in a constructionally
powerful programming language may be condensed and stored compactly; groups of such

programmes mey, by exploiting the power of the language, be made to combine operations

in & way which reduces to a minimum wastage of computer storage.
In order to compare Algel 60 and FORTRAN with respect to economy in the use of

cOWpUter storage, first consider the following Algel S0 procedure:

real procedure sum (index, low, interval, up, ferm);
| integer indexr, low, interval; up; real term;
bcgin real losgum; logsum:i=0;
for index:=low step interval until wp do Locsum:=locsum+term;sum:=Ilocsum
e b T R
fnd
When used, inferval, up and tert in the above procedure may be real expressions depen-
ding upon index. Subject to suitable prior declarations, sum may be used in the follo-

Wing ways:

. aj gimple ewmi=gwm(k,0,1,10,exp(-k])
b) ti=1 step 1 until n do

for
row gum[i] i=awm(s,1,1 n,a[L,5])
for

el J:=1 step 1 until »n do
eol sun[j] i=sum(z,1,1,n,a[z,7])
d) tracaei=gum(k,1,1,n,a[%,k])

' Gy power sum:sgum(k,1,%,16,%)

=
£} another sumi=grm(k,1,1,10-%, k=k)
g] double gum:=gtm(i,1,1,n,5m{f,1,1,1.a[£,5]11)

s
cell a) computes kEDa'K1 calls b=d) compute the row sums, column sums, and sum of

diagonal elements of a matrix; call e) computes EEDEE: call) computes kglkz: call
gl computes the double sum igl jélﬂi.ﬁ'

Naturally, individual FORTRAN programmes can be writtem to carry out both the
computations of the above examples and any other function which the above procedure
may be made to fulfil. However, in the above example, many individual FORTRAN pro-
gramnes must be constructed to implement all posslble functions of one short Algol 60
procedure. Numerous examples, more meaningful but less readily understood than the
above, might be given. As these examples suggest, an extensive library of Algol &0
procedures can be made to depend upon a small mumber of procedures each capable of

use in many different ways; the programmes of a corresponding FORTRAN library require

the use of significantly larger machine storage.

4.5, Facility

Any symtactically restricted language imposes burdens upon the person wishing to
use i1t as 2 medium of expression. This is true of programming languages, and is true
of FORTRAN with respect to the allocation of auxiliary storage.

During a stage in an extensive computation it may be necessary to store certain
numbers (the amount of required storage possibly depending upon the results of previcus
Caltulations] which are no longer required when the stage has been completed. When
using Algol 60 it is permissible to enclose the instructions implementing the computa-
tions of the stage in a block and, in the block heading, to declare the extent of the
SloTape required during the stage. At the conclusion of the stage the block is 1eft,
the storage declared as above now becomes free for alternative use [if so desired,

during the execution of further stages). The above stape may contain an intérmediate

Stage, itself requiring auxiliary storage; in such 3 caze the above block contailnsz an

interier bleck, equipped with the necessary storage declarations which reserve storage
additional to that reserved at the heading to the outer block. This nesting process

may be continued. The above blocks and subblocks may be declared procedures. The

way in which dynamic storape sllocation takes place naturally depends upon the order
in which the procedures are called. The storage allocation strategy varies from pro-
gramme to programme, but in every case it is implemented automatically by the Algol
compiler. In this way, machine storage is used in the most economical way possible;
it is reserved when needed, and made free when not required.

It 15 to A certain extent possible to simulate the dynemic storage allocation
described above when using FORTRAN. The blocks and sub-blocks ere writtenm as sub-
routines which contain in thelr parameter lists cne-dimensional Teal array names such
a5 [for example] WORE1, WORKZ,... . The user calculates in advance the amount of
auxiliary storage needed by each subroutine when used in the solutiom of his problem,
declares in the heading to the main programme a global one-dimensiomal real array,
WORE say, and replaces WORK1, WORKZ,... upon call by suitably displaced references
to WORK. In other words, each time the user writes & programme, he effectively im-
Plements the automatic storage allocation facilities of an Algol 60 compiler by himself
fand must do so without error). If he is not prepared to do this, he must reserve
aiixiliary storage statically (e.g. declare WORK1, WORK2Z,... to be independent
arrays of maximal size) and leave considerable portions of machine storage idle du-

*ing most of the propramme execution time.

2.4, Coherence

That Algol &0 procedures may be assembled in a compact library may be demonstrated
by considering the following example: let & real procedure g have in its parameter list
4 rea] expression g which the user must supply to suit his particular needs when using

H+ The user may make use of the allocation 21=q (.0 ,g1,...), for example, gl being

Hie real gxpression in which he is interested (see Diag. 1.

=

314G (. . oagl, e — =

¥
S
e =gy

Diag. 1

Let a further procedure p alsc have in its parameter list a real expression [which
the user must supply; further, let p make use of an internal real procedure pl which

itself makes usze of f; lastly, let p call g, with pl replacing the g of g upon call

{i.e. suppose that the body of p contains a statement of the form gi=g(...,pl,...]);

see Diap. IID.

I
|
r £
F"[.l-.l:l‘“.:I
|
I
5 |
PL | TR LA o
| I
v |
|
I
|
TR iPlysis) = A Gl i i)
I
I
b

Diag. I1

Two features may be observed in this case! that of limited indirect recursion
[p calls g which calls part of p which does not call g), with the further complica-

tion that g (which is external to p) makes use of a real expression supplied upon

€all in the parameter list of p,

The above discussion is perhaps made more tangible by means of an example.
NUMAL contains 8 real procedure gerein delivering the value of & for which a real
yalued function g{x) assumes the value zero in a prescribed interval {zeroin cor-
pesponds to g and g(z) to g in the above example): it will, for example, locate a zero
of cos(x) In the range [0,2](cos(x) corresponds to gl in the above). NUMAL also
contains a procedure rRkia for the mumerical solution of a differential equation
gz..g[;,y} {y{mn]ﬂyn prescribed) until a zero of a real expression f {depending
upon x and ¥} is encoumtered; thus, if the user wishes to determine the point &t
shich the graph of y(x) intersects that of l+z, [may be taken to be y-l-r (rkiz
eorresponds to p above, and f to f). r&kbs integrates the given differential equa-
tion, inspecting f at every step, until a change in sign of f is experienced over
@ step. The endpoints of an interval contalning a zero of f have now been located.
rkba now calls upon zgroin to locate the zero of f accurately; the value of y, upon
which f depends, is obtained by numerical selution of the given differential egua-
tion; sercin is called by rkiaz with an internal real procedure of rXSg in place of
j in the parameter list of seroin.

A FORTRAN implementation of the above process of indirect recursion is diffi-
cult to contrive. It is impermissible to relocate pl external to p since; to begin
With, pl requires access to the real expression which replaces f upon call of p by
the user, The most direct solution to this problem is simply that of stripping the
Parameter list from g, and placing an emtire copy of the text of g within p. A
FORTRAN programmo library implememting numerous advanced mathematical techmiques in
this way is necessarily vitiated by massive duplicetion of programme text.

The coherence of Algol 60 has been fully exploited in NUMAL. The major procedures
Of NUMAL are assembled in compact modular form with minimal duplication of text between
#uxiliary procedures. Since the standard operation sequences Implemented by the auxi-

1{“TF Procedures are of frequent occurrence, the development of new computational

Fechniques is greatly facilitated.

9.5, Efficiency

Power in a language conduces to efficlency. That this is so in the case of
algol 60 may be seen by comsidering the procedure quadrat of NUMAL, which may be
geed to evaluate I[f;a,b]-lbf{:]d: {-=m<g,be=)] where is real valued. Quadrat makes
pyse of an internal real prgcedure gquadewm, which functions recursively. After some
initial administration, two quadrature sums involving values of f over [a,B] are
gvaluated and compared; if they agree to within a specified tolerance, onc of them i3
gccepted a3 a suitahle approximation to I'(fia,b). If they do not agree, the interval
[a,b] is split into two parts [e,}(a+b)] and [i{a+b).b]; the integrals over the two
eybintervals are treated in the same way. After an allocation of the form mean:s

0, 5& (a+h), guadsie containz a statement of the form

gram: =qriadarm (o, memr, . o .) rquadear (mean by, .00

The function values used in the evaluation of the two quadrature sums over [a,b] are

used, with others, in the svaluation of the sums over the two subranges [they replace
the dots in the above statement).

When applied, with a=0, b=1, to a function which is smooth over [0,1] and [31,1],
but irregular over [}.1]. guadret might function as follows: the first two quadrature
sums over [0,1] do not agree, since f mishehaves over [§,1]; after the first split,
the two sums evaluated over [1,1] do agree, since f is smoeth over this interval,
snd integration over this interval is terminated; they do not agree over [0,1], since
this interval contains [1,1]: after the second split, the integral over [0,1] is dis-
posed of; further subdivisions over [1,1] take place, until all subintervals have
been dealt with., For other functions behaving in another way, the splitting patterns
are different: guadrat uses a fine interval where required, and not otherwise. This
efficient method of adaptive guadrature is easy to programme in a recursive language
such ‘as Algol 60, but difficult to implement when using a non-recursive language such

#s FORTRAN.

-10-

| f. POWET
It is to be expected that power in a programming langusge facilitates the genera-
of powerful computational techmology. That this is so may be illustrated by
j.fﬂm:a to the Algol 60 procedure quadmat above. This is called in the form
| integral i=quadrat (a. b, o, e o)
‘where, in particular, f is a real expression depending upon x (just as ferm depends
I.w index in the example of §2.2). During operation, guadrat allocates to & the
‘gyccessive argument values in [a,k] for which a function value f(x) is required.

The double integral

b ulx)
l J glx,y)dydr
a L&)

-;iti.ﬂn Il,u and g are real valued functions, may immediately be evaluated by a call of

the form

double int:=quadrat(a,b,z,quadpat(l (@) .ulx) s Weg@ (el seeadaaa).

::.-Intngrﬂa of higher order may be evaluated in the same way; guadrat Is then carrying
‘ut adaptive integration in many dimensions. This efficient and powerful usage is
5-1_a=m.p113h3d very simply by means of a single assignment statement. It is conside-
:“_-*i‘iblr more difficult te achieve the same result employing FORTRAN. Again, many

‘examples of a similar nature could be given.

4.7, Efficacy

Algol 60 is an economically designed language: it is thus possible to construct
-':'i"l!ﬂl 60 compilers for use with small computers (it is remarked that PL1 is not eco-
‘MOmically designed; as far as the writer is aware, no mini-computer full PL1 compiler
BXists). FORTRAN is a programming lenguage with limited capabilities, and for this

Teazon PORTRAN compilers have also been comstructed for use with minicomputers.

=11-

The major procedures of an Algol 60 library may be assembled in compact modular
form from auxiliary procedures; furthermore, optimal use of available machine storage
is made during execution, Thus an extensive Algol B0 library may be committed to a
minicomputer backing store; all but excessively larpge numerical probleme cam be solved
by use of a minicomputer in this way. A corresponding FORTRAN library requires far
more extensive backing store [indeed, so much as to render the use of the library in
this way infeasible) and its subroutines occupy far more high speed storage during
execution; the limitations of FORTRAN virtupally necessitate waste of data storage
space} in short, the range of problems which can be handled by a small computer when
FORTRAN 1is used 1s Testricted.

Execution times for programmes assembled from an Algo]l B0 library may, by ex-
ploiting the resources of the language, be made far shorter than those of their
FORTRAN equivalents. That this 1s 3o can perhaps be most easily explained with
T;Fer&nca to NUMAL.

Many processes in numerical analvsis invelve strategic decisions that are taken
relatively infrequently, and subsequent executions of elementary operations such as
the assigmment of initial values to vector and matrix slices; duplication and inter-
change of such slices, rotations and reflections, etc., the latter operations con-
suming most of programme execution time. NUMAL contains a set of two dozem or so
procedures implementing the above elementary operations (the procedures are taken
from the books by T.J. Dekker and W. Hoffmann: Algol 60 procedures in numerical alge-
bra; vols. | and 2, Mathematical Centre [1268}). The major precedures of MIMAL are
thus easy to read: a call such as infveclr,2,10,2) is easily understood to mean that
the elements with suffices 2,...,10 of the vector ¢ are being given the initial value

r, for example; it is slightly harder to deduce this fact from an equivalent for sta-

tement. The major procedures of NUMAL are more concise than those of a library not

gontaining such a set of elementary procedures: mumercus for statements carrying out
initialisation of vectors are replaced by subroutine calls exploiting the single EE'.E,
statement belonging to imives; similarly for the further elementary operations. [lss
of the above set has a third, and more important consequence. The elementary proce-
dures in question are all gquite short; prepared versions may be written, making opti-
pal use of machine capabilities, in the internal language of the machine being used,
The user of NUMAL is thus offered the possibility of both working with a language
which has the powsr and slegance of Algol 60, and using programmes which function for
most of the time (the proportion depending upon the nature of the programme in gues-
gion) directly and with optimal performance in internal machine language.

The above artifice is not available to the user of FORTRAN. Due to the lack of
coherence between blocks of statements, the above elementary processes must be des-
eribed in extenso within major subroutine bodies; execution time of the compiled pro-
gramme is hence greater than that of its Algel 60 counterpart.

In the above remarks concerning the merits of Algol 60, competent compilation is
nEsumead . Certainly many competently constructed Algol 60 compilers exist outsids
,:'hlﬂ'l America.

Tt has also been assumed that the Algol 60 library is assembled with maximum
utilisation of language resources; this condition is not, at presant, slways satisfied,
‘AIthough games such as chess are sasy to devise. the full implications of the rules of
thess itself are still the subject of research; it is evident that some chess players
(BaVe iess clear understanding of these implications than others. Similarly, languages
such as Algol 60 are easily invented, but it is clear that the resources of Algol &0
itself have not yet been fully understood; some collections of Algnl 60 procedures
ﬂiwu been assembled with less clear understanding of these resources than that sus-
(S8ining the construction of others. For example, in the collection of 1inear algebra

‘MBbroutines (Linsar Algebra, Springer (1971)) edited by Wilkinson and Reinsch, the

-1%-

slementary operations referred to above are written out, repestedly and extensively,

4n the texts of the subroutines of this collection (the sole use of machine dependent
spandard operations comcerns the accumulation of double precisiom inmer products) and
she resulting translated machine programmes are in consequence less efficient than those

PfﬂdufEd by the NIMAL system.

5, The FORTRAN version of NUMAL

4.1, Modificatioms to NUMAL

The documentations and subroutines which follow this introductiom depart im many
respects from being a direct translation of the NIMAL procedures.

A number of straightforward semantic errors (see e.g. Tngmaives and Ingtamvge of
§1.5.2 (1977)) have been corrected. Certain of the numerical results given in the
documentation to NUMAL purporting to be produced by test examples are not and should
not’ be produced by use of the procedure in guestion (see o.g. bessiapiusn of §6.10.2
(1979)); the documentation has bheen improved at such points. It has also been improved
where misleading. For example the subroutine start, which determines the starting
point of & backward recursion for the stable evaluation of a sequence of Bessel func-
tions Ja*i{r] oT Ia+i{xj with consecutive values of 1, is not required (as is suggested
in on page 10 of §6.10.1 (1979)) for the evaluation of values of Ha+i[x}. In places
where lines of programme can be omitted without lozs (see &fmeymir<i] of §3.2.1.2.1.1
{1974)) this has been done. Again, where variables are declared but never used [see
8.g, triowb §4.2.2 (1975) where some real variables remain as detritus from a previous
¥ersion of the procedure) they are omitted from the translated versions.

The Algol 60 compiler for the CDC Cyber 70 upon which the NMIMAL procedures have
besn tested, very kindly allocates the value zero to all real and integer variables
immediately following declaration. Thus (allewing for format modification) the programme

begin real x; print (z) erd

-14-

-?riﬂtE the value 0.0. Ocecasional unwitting use of this facility has been made in
JUMAL {see e.g. ark 65.2.1.1.1.1.H (1978]); the translated versions may be implemented
by ynkind compilers. (Thus if comparison between two versions of a procedure reveals
| the presence of a mmber of apparently pointless allocations to zero at the beginming
of the FORTRAN version, the above provides an explanation.)
For the COC Cyvber 70, integers lie roughly in the Tange ilIII]:'B and real numbers,

D*EEH,

with precision lﬂ_ld, lie roughly in the range 1 Ranges for other computers are

not 50 generous; for example, the PDP 11/45 minicomputer integer range is roughly
+32000, and REAL+3 Teal numbers, with precision Iﬂ_]? lie roughly in the range 1013?-
certain NUMAL Algel &0 procedures appear to benefit explicitly from the gemerous ranges
of CDC Cyber 70 numbers. For example, a walue which can be as small as the r=2al number
precision must be allecated to location 0 of a real array em occurring in the parameter
list of the procedure equilbroom (§83.2.1.1.2 (1574)) prior to call. equillroom comntains
th; statement epai=em[0]+4; it is important in the subsequent course of the computation
thet the value of gps should be nonzero. For the CDC Cyber 70 the fourth power of the
real mumber precision lies within the Tange of real numbers having 4 nonZern represemta-
tion; for other computers this is not so (e.g. Elﬂ_l?iﬂtlﬂ_ﬁ? with regard to the
PP 11/45) and in such a case eps above acquires the value zero and equilbreom fails.
The procedure eguilbroom and others have accordingly been modified in tramslatiom,
3imply to ensure that they function when implemented by computers with restricted range.
Similar modifications have been carried out to increase the range of mumbers that
tan be dealt with. For example, the quotient of two real numbers, both near the upper
limit of the real number representation, can be formed (the result being approximately
Unity). The quotient s+iy=(a+ib)/(o+id) of two complex numbers can be formed by use of
the following allocations:

=1.0/ (orcrdsd) jo=Fw(arcrbrd) jy i=F= (Bre-aed) .

=15-

These allocations cannot be used whenm a,....d are all near the limit of the real nmumber
representation: the formatiom of the demominater of f results in overflow. However,
such overflow can be avoided by use of the numbers ofr and dfr, where r=max(l|al,|d]].
guch use 1s made in the procedure comdiv ([§1.3.2 (1975)). However, similar comsidera-
tions apply in to the use of elementary reflectors L‘EETHIEHET} [for a short Aaceount
and references to the early history of such matrices, see Ch. 8, §2 of: Turnbull H.W.
and Altken A.C., An introductiom to the theory of canonics] matrices, Blackie (1932];

rd adition [1961}) and the MUMAL procedures implementing use of

pover reprint of the 3
these elementary reflectors have not been modified as above. Tn the translated ver-
ston,; they hive.

A number of NIMAL procedures make use of certain specizl procedures whose fumc-
tiong are explicitly based upon the characteristics of CDC Cyber 70 arithmetic, which
differ from those of other computers. Por example, it is possible that for certain
nﬁhﬂri:al values allecated to the real variable x during the course of a computation,
the value of the boolean expression [x=0.0) is false, while that of (1.0+=x=0.0]} is
frue. Precautions against this sort of mmerical behavicur were explicitly incorpo-
rated in an early verszion of eerotn [Bus J.C.P. and Dekker T.J., Two efficient alpo-
rithms for finding a zero of a function, Report NW 13/75, Mathematical Centre (1975}).
Floating point numbers have a full representation of the form +2%n where ¢ 1s an integer
exponent and j<m<l; for the smallest positive real mmber having such a representation,
¢ has its maximum negative value and m=3; the value of this number is delivered by the
NUMAL real procedure dugarf. Computations can produce nonzero numbers in a twilight
region for which & has its maximum negative value but m<}. Evidently special steps

may have to be taken when such numbers are produced; NUMAL contains a number of sub-

routines in which, for example. the value of an inner product of two vectors 1s com-

pared with that of dwarf, special steps being takem if the product is small. Again,

NMUMAL contains a boolean procedure cverflow which is accorded the value true when ,
upon ¢all, its real parameter is given an overflow value. Since many computers and
many cempilers do mot function in the above way, machine arithmetic oriented proce-
dures have been expunged from the translated versions: the affected procadures hawve
peen modified.

Certain procedures have been slightly modified in translationm (for example, the
illustration of the use of &ff (§5.2.1.1.1.3.B (1974)) in the NUMAL version appears
to make great use of the known analytic solution of the differential equations solved
mmerically by that procedure; modifications to the latter gssizting the wser in
cases in which the analytic solution is unknown have been introduced.

Seme procedures which will doubtless be added to NUMAL (for ex:mpla,_ESTABP and

ISTABP, delivering coefficients of stability polynemials, and EFFORK, implementing an

exponentially fitted fourth order Runge-Kutta method] have been added to the trans-

lated vers{ons. An addendum contains a number of format subroutines

designed to combat the FORTRAMN format conventions.

Although many of the translated procedures (those dealing with linear algebra,
for example) may to a great extent be used without knowledge of the underlying nume-
rical analysis, the writer is of the opinion that some, in particular those implemen-
ting advanced techniques for the mumerical solution of ordinary and partial differen-
tial equations, canmot be so used. Accordingly, very brief accounts of the underlying
methods, touching upon the significance of the required input parameter values, have
been added. The documentations provided with the FORTRAN versions have heen adapted
from sundry internal reports and collequium publications of the Mathematical Centre.

In common with all great and enduring literature, the latter contain passages which

— precisely that which the reader would wish them to mean; it may well be that the
gﬂritET'E reformulation does not conform to the original intention. The documentations
‘are in all cases provided with a subroutine tree, indicating the way in which other
"raquired subroutines are called; they are also provided with a storage map (produced

gutomatically by the FOP 11/45 minicomputer upon which the FORTRAN versions have

peen tosted) of the associated variables. Numerous elementary test programmes, sor-
ving no other purpose than to indicate to the user how the subrowtines are to be
used, are juxtaposed to individual subroutine documentation (they are prefixed by T
in the documentation headings; thus TLINT, etc.).

The arrangement of the NMAL library reflects the interest of its authors in
numerical analysis; thus necessary auxiliary procedures are placed adjacent to prin-
¢ipal procedures carrying out a major purpose (for example, a procedure for solving
g set of linear equaticms, in which a general user might well be interested; is
iéﬁediately followed by one for a required matrix decomposition, in which he might
pot}. The trenslated wersions have been resrdered (the subjects in the new order
being integers, real numbers, complex numbers, algebra,....) and auxiliary subroutines
hive been assembled in sections which the user not primarily interested ln mumerical
analysis may choose to overlook.

The set of programme documentations is prefaced by a comprehensive list of con-

tents giving one or two-line summaries of the subroutine functions; the complete

scope of NUMAL may be roughly aszsessed by a glance through thias Iist.
5,2. The translation of the NUMAL Algol 60 procedures into FORTRAN
The petty restrictions (see §2.1) with which FORTRAN ls afflicted cannot directly

be overcome; for this reason the FORTRAN versions are far longer than their Algel 60

Briginals.,

=18-

An attempt has been made to preserve similarity of appearance between the origi-

pal and translated versions of the NIMAL procedures. Thus a construction such as

NNETE

1F

nl
nZ HT

4 iz g boolean expression,

{.NOT,4) GOTO nl

GOTO n2

C

appears as

Again, the translated versions of intermal procedures set at the begimning of an

Algal 60 procedure alse occur at the commencement of the equivalent subroutine, use

being made of appropriate GOTD statements; thus, a comstruction such as

procedure proef...)

hegin...

protedure intprocl{...)

end
ol e, gl

intproal(...)

d

s

irpea

s a5

SUBROUTINE PROC{...)

DATA DECLARATIONS

GOTO =l

[NTFROC1

GOTY (n2,...) JiMP1
PREPARE DATA FOR INTPROCI
JIMP1=1

GOTO ml

"

Sequences of internal procedures declared at the beginning of a8 procedure are

gealt with in the szame wav.

Allocatien of auxiliary storage is left to the user of the translated PToOETAm
mes. The dimensions of auxiliary storage arrays are fixed at some convenien: magni

tude by a declaration at the beginning of a subroutine (AUX (10,15}, for example);

if an auxiliary storage array features in a subroutine call within a subroutine
bady, so that the row dimension of the array mist alsg occur in the parameter 1ist
8f the called subroutine at call, a dimension allocation statement, corresponding
£8 the conveniently chosen magnitudes, occurs at the baginning of the subroutine
{thus: AUXDIM=10, for example; the internal call has the form CALL SUB(...,ALX,
AXDIM)). If the user requires more extemsive auxiliary storage, he must change
both the declaration and the allocation statement accordingly (AUX{10,15) and
AUXDIM=10 become AUX(20,25) and AUXDIM=20, for example).

It proved mecessary to overcome the lack of facilities for communication bet-
¥een blocks (see §3.3) by applicatiom of an artifice (due to N. Rafla). The use of

this artifice in connection with the example of §3.3 is illustrated in Diag. I11.

-
Lo
-

L el SR -

CONTRL=1

@ Z=0(CONTRL,V1,V2,...,D,...

(CONTRL=2) g =~

A=V]1
B=V2

(CONTRL=2)

AVl & — — — —
Bal2

* Q[CONTRL,V1,V2,....6,...
|

I
C [CONTRL=0]

—i=

L

i
=71

g

NTRL=1)

+

Vi=

Vi=
CONTRL=2
RETURN

I
C | (CONTRL=2)
b

Vi=
¥i=

IF (FINISH] CONTRL=0
= = — RETURN

An extra integer, CONTRL, is inserted (in the first position) of the parameter
of the real function subroutine (equivalent to g. @ may be used, with the
. me of 8 suitably constructed external function subroutine replacing G, and CONTRL
‘veplaced by O upom call; Q is now functioning in a simple mode, and no communication
with the interior of another subroutine is taking place. It is desired, however,
g subroutine P (equivalent toe p) should call § which calls a block of instruc-
Pl interior to P, 1In the cases treated, it has always besn found that the
eter 1ist of (has certain other variables V1,V2,... besides G. In a non-simple
mode, P first calls) with CONTRL=1 say, to indicate to @ that it is being called
in this mode. Functions for a certain mumber of steps, and, now wishing P1 to be

ted, allocates the values of certain mumbers required during the execution of

Pl to V1,V2,..., sets CONTRL=2 say, and retwrns to P. P notices that the value of

;ﬂHTHL is 2, executes Pl, using the information provided by V1,¥2,..., and calls Q
ﬁ;th CONTRL left equal to 2. 0 notices that the value of CONTRL upon call is 2, and
jhfnrdingly jumps immediately to the point of previous termination, and continues
computation. Tn this way the values of V1,V2,... may be adjusted, and P1 may be
called by 0, repeatedly. When Q wishes to indicate that its computations are com-
pleted, it allocates the results of its computations to V1,VZ,..., adjusts the value
Of CONTRL to 0 (or some other velue #2) and returns for the last time to P. It may
pocour that Q wishes to call P1 at & mmber of points within Q. CONTRL is accordingly
ﬂﬂvum the values 2,3,4,... during the conversational process. Again, if O wizhes
"0 call internal blocks P2,P3,... of P, CONTRL may be used for this purpose. In the
‘Bon-sisple mode of operation, G 1s unused by 0:; P must insert the name of & chummy
External function subroutine (D, in Diag. TIT) in place of G upon call of Q. CONTRL,
iiﬁ the sbove, functions as a multiple input and exit device, and as a device for

Touting computational paths in both merged subroutines,

pxtensive use of the above device is made in the translation of the NMUMAL col-

jection. The FORTRAN user who uses the above subroutine @) in the simple mode (i.e.
what i5 for him a normal way) must pay the price of calling Q in the form Q(0,...);
he may, at his own speed, experiment with recursive use of subroutines,

- The limitations upon communicatiom in FORTRAN have also had & further effect
ﬁﬁhp the structure of the translated procedures. It may happen, at a certain stage
ﬁn the implementation of a numerical process, that mmbers threaten to go out of
pange or that some other computational misfortune occurs. Suppose that the user
;bngtruﬂtad procedure implementing this stage is pl, and that it has been called by
jﬁg 1ibrary procedure p2,..., which has been called by pm, which has been called by
the main programme. In the use of Algol 60 it iz permissible for pl to break off
gperations (as would be desired in the above case) and jump directly to an smergency
¢xit in the main programme; control now passes to this programme and appropriate
mQ;ndial action can be taken. Such a direct jump is impermissible in the use of
FORTRAM. For this reason, many subroutines are declared as logical function sub-
routines. In the above example Pl (equivalent to pl) may set a failure indicator
'[by use of a common declaration) in the main programme, set its own value to false
ind return contrel to P2, which notices that Pl has the value falee and sets its own
¥alue to false, and so on: the main programme is reached and the failure indicator
can be inspected. It may occur that failure cam occur for many reasons; to assist
3: such cases, the subroutine concerned is declared to be an integer subroutine

{given the value 0 upen return from a successful call, 1,2,... otherwise].

Fully recursive processes, such as that implemented by quadrat as described above,
ﬁiﬂu been re-programmed by the writer ab initio; the Algol 60 and FORTRAN versions bear

ﬂittle resemblance.

5.5, Machine dependent features

Some of the modifications to NUMAL described in the preceding sections resalt
indirectly from the effect of machine and compiler characteristics. Further features
of the translated versions result directly from considerations of machine hardware
gnd compiler construction.

In the FORTRAMN subroutines themselves, all real variables are declared to be of
REAL*3 length; since many FORTRAN compilers are not provided with complex declara-
tions yielding real and imaginary parts of REAL*3 length, the real and imaginary

parts of complex numbers are declared separately (to be of REAL*E length) and

arithmetic operations upon complex mumbers are programmed. The programmes are trans-
portable, in the sense that those subroutines which require knowledge of machine pre-
cision, maximum single length integer representation, etc., have these values in
their parameter lists, Certain subroutines of linear algebra (for example, those
eoncerned with the iterative refinement of a numerical solutiom to a set of linear
¢quations, and the iterative refinement of eigenvector determinations) Tequire opera-
tions upon double precision mumbers; such numbers have representations of the form
ﬂﬂ2ah+lﬂ_dt where ¢ is an integer exponent, 4 is the mmber of binary digits used

to represent the mantissa of a single precision (e.g. REAL*8) mantissa, and h and ¢
are single precision mantissae. The subroutines in question require, for example,
that & double precision sum be formed from two single precisicn constituents (e.8.
g=b+o,q in double precision as above, b and ¢ in single precision). Correct execu-
tion of such an assignment is machine dependent, and the elementary subroutines
{DPADD, ...) below should be programmed independently in the internal language of the
michine in use. At the moment, to test operation of further subroutines, the arti-
Fiece of treating a ms above in single precision has been adopted (so that, in the
above, a=2%h and 2=0). The dependent subroutines for the time being produce no use-

ful result.

=7 =

gince they are machine dependent, it has also been left to the user to construct
nsfer programmes which, upon receipt of information that a major subroutine is to
ysed, automatitally transfer both it and required auxiliary subroutines from
; yng storage into high speed storage (with cancellation of duplicated transfer if

& or more major subroutines use the same auxiliary subroutines).

4., FORTRAN compiler dependent Ffeatures
The translated verzions of the NUMAL procedures have been writtem in such a way
aat chey may be implemented by a number of FORTRAN compilers. No advantage has been
hen of the characteristics of particular compilers, which appear to differ conside-
ihly. For example, the way in which parameters are passad seems to be the subject
.duhate among constructors of PORTRAN compilers. When run upon the PDP 11/45 mini-
ter, the following programme prints 2,2 and 2,2,
SUBROUTINE SUB (I,.J)
INTEGER I,J(2}
J(1)=J (1)1
J{2)=J(2)+]
WRITE (6.1)J(1).J(2)
FORMAT (I1)
RETURN
END
INTEGER K(2)
Kf1)=1
K(2)=1
CALL SUB (K({2].K)
WRITE (6,2)K(1]),K(2)]
FORMAT (I1)

END

EH:

goth inside the subroutine body, and outside, 1 and 1 make 2, as perhaps they should.

phen Tun upon the WATFIV compiler, the programme prints 2,2 and 2,1: 1 and 1 no longer
aiways make I outside the subroutine body, Many examples of a similar nature could be
given. Precautions against the productiom of anomalous Tesults, as in the above exam-

ple, have been taken; this means that when run on 2 particular compiler, UNNOCOSSATY

Pracautiﬂns have been taken.

-26-

Contents

Elementary operations
1.1 Multi-lenpth integers
§.2 Double preciszion real arithmetic
1.2.1 Double precision functions of single preciszion arguments
1.2.2 Double precision functions of double precision arguments
1.5 Complex numbers
1.4 Reordering processos
Linear alg=bra
2.1 Real companents
2.1.1 Elementary ocperations
2.1.1.1 Operations upon vectors with real compoments
2.1.1.2 Real rectangular matrix-vector operatioms
2,1.1.5 Operations upen individual rows, colusns and dlagonals of rectangular
matrices with real elements
2.1.1.4 Operations upon submatrices
2.1.1.5 Submatrix-vector operations
2.1.2 Elementary operations in double precisiom
Z.,1.3 MNarms
2:1:3:1 Vector norms
2.1.3.2 Matrix norms
2.1.4 Solution of linear algebraic equations with real coefficient matrix
2.1.5 Inversion of real matrices

2.1.6 Determinants of real matrices

2.1.7 Determination of real eigenvalues of real matrices

Z2.1.8 Determination of real eigenvectors of real matrices with real eigen-
values
.1.9 Singular value decomposition of real matrices
.1.10 Determination of complex eigenvalues of real matrices
.1.11 Determination of eigenvectors of real matrices with complex eigenvalues
.1.12 Extended singular value decompositions of real matrices
2.2 Operations involving the linearly stored upper triangular part of a real
symmctric matrix
2.2.1 Elementary operatlons
2.2.1.,1 Single preciszionm operations
2.2.1.2 Double precizion operations
2.2 Solution of linear equatlions

2.5 Inversion of matrices

2.4 Evaluation of determinants

+2.5 Real eigenvalue determinations

2.6 Real eipenvector determinatioms

Complex components

.3.1 Elementary operations involving matrices with complex elements

2.3.1.1 Complex rectangular matrix-vector operatioms

2.3.1.2 Operations upon individual rows, columns and diagonals of Tec-

tangular matrices with complex elements
2.3,1,.3 Matrix norms
.2 Determination of eigenvalues of general complex matrices
Determination of eigenvectors of gemeral complex matrices

Determination of eigenvalues of Hermitian matrices

Determination of ecigenvectors of Hermitlam matrices

2.4 Auxiliary transformations
2.4.1 General real matrices
2.4,.2 Linearly stored upper trianpgular parts of symmetric matrices
2.4.3 Complex matrices

Algebraic computations

3.1 Manipulations upon polynomials

3.2 Evaluations of polynomials

3.3 Transformation of series

3.4 Continued fractions

Pumerical solution of differential equations
4.1 Imitial value problems
4.1.1 Single first order squatiomns
4.1.2 Single second order equations
4.1.3 GSystemsz of first order equatioms
4.1.3.1 Direct methods
4.1.3.2 Implicit methods requiring the wse of the Jacoblan matrix asso-

ciated with the system of differential equations (e.g. for the equation

dy (x]
X

4.1.3.3 Methods making wse of a stability polynomial ([requiring a bound

= £x,¥) [E,jER“} of the matrix with elements Hfifayj s L] O o B

upon the spectral radius with respect to the eigenvalues in the closed
left half-plane of the Jacobian matrix associated with the system of
differential equations, sssuming these eigenvelues to he ([approximately)
rezl alone (systems of this form arise from certain discretized parabelic
partial differemtial equations) or (approximately) pure imaginary alone
[systems of this form arise from certain discretized hyperbolic partial

differential eguations))

4.1.3.4 FExponentially fitted methods (requiring kmowledge of the location
of clusters in the left half-plane of eigenvalues of the Jacoblan matrix
associated with the svstem of differentinl equations)
4.1.4 Systems of second order differential equatioms
4.2 Boundary value problems
Amalytic evaluations
Elementary operations
Numerical inmtegration
Fourier series
Approximation of Jacobian matrices
Zero-finding algorithms
Minimisation
Parameter estimation
Special functionms

6.1 Logarithmic, and trigonometric and hyperbolic functions and their inverses

6.2 Exponential integrals, complete and incomplete gamma functions, incomplets

beta functioms, the error Ffunction and inverse error function, sine and cosine
integrals and Fresnal integrals
6.3 Bessel and associated functions

6.4 Zeros of classical orthogonal polynomials and Bessel functions

hddendum: Format subroutines

