Commuting Cayley numbers

by P. Wynn

Abstract. Necessary and sufficient conditions are given for α and β , belonging to a division algebra of generalized Cayley numbers, to satisfy the relationship $\alpha\beta=\beta\alpha$.

We consider the alternative algebra $\mathbb{C}\{F,\xi\}$ of the generalized Cayley numbers over a field F which have the representation $\alpha=(a,B)$, $\beta=(b,B)$,... where a,A,b,B,... are quaternions over F, and multiply according to the rule $\alpha\beta=(ab+\xi \widetilde{B}A,Ba+A\widetilde{b})$, where $\widetilde{b},\widetilde{B}$ are conjugate to b,B and $\xi\in F$ is fixed (for the theory of Cayley numbers and associated references, see [1]).

Theorem. Let $\alpha, \beta \in C(F, \xi)$ where F is not of characteristic 2 and ξ is not the norm of any quaternion over F. Then $\alpha\beta = \beta\alpha$ if and only if either $\alpha \in F$ or $\beta = \lambda\alpha + \mu(\lambda, \mu \in F)$. Proof. If α, β satisfy one of the stated conditions, then $\alpha\beta = \beta\alpha$.

If $\alpha=\hat{\alpha}$ (where $\hat{\alpha}=(\hat{\alpha},-A)$ is the conjugate of α), and F is not of characteristic 2, then $\alpha\in F$. We now discount this possibility; thus, in particular, $\alpha\neq 0$. If $\alpha\beta=\hat{\beta}\hat{\alpha}$, then $\alpha\beta=\omega$ say, where $\omega\in F$. Since ξ is not the norm of any quaternion over $F,C(F,\xi)$ is, by a theorem of Albert [2], a division algebra, and α^{-1} exists. Hence $\beta=\omega\alpha^{-1}=\omega n(\alpha)^{-1}\hat{\alpha}=\lambda\alpha+\mu$, where $\lambda=-\omega n(\alpha)^{-1}$, $\mu=\omega n(\alpha)^{-1}t(\alpha)(n(\alpha)=\alpha\hat{\alpha}(\in F))$ and $t(\alpha)=\alpha+\hat{\alpha}(\in F)$ being the norm and trace of α). We now discount the possibility that $\alpha\beta=\hat{\beta}\hat{\alpha}$. By a theorem of Artin [3], all products formed from the two fixed numbers α,β are associative and hence, trivially from $\alpha,\beta,\hat{\alpha},\hat{\beta}$. Since $\alpha\beta=\beta\alpha$, these products are also commutative. Multiplying the relationship $(\hat{\alpha}-\alpha)\beta=(\hat{\beta}-\beta)\alpha+\beta\hat{\alpha}-\beta\alpha$ throughout by $\beta\alpha-\hat{\beta}\hat{\alpha}$, we find that $(2Tn-t\tau)\beta=(2tn-T\tau)\alpha+T^2n-t^2n$ (where $t=t(\alpha)$, $n=n(\alpha)$, $T=t(\beta)$, $N=n(\beta)$, $t=t(\alpha\beta)$). Since $\beta\alpha-\hat{\beta}\hat{\alpha}\neq 0$, $\alpha-\hat{\alpha}\neq 0$, the inverse of $2Tn-t\tau=(\beta\alpha-\hat{\beta}\hat{\alpha})(\hat{\alpha}-\alpha)$ exists. Hence β again has a representation of the form $\lambda\alpha+\mu$ $(\lambda,\mu\in F)$.

By symmetry, α and β may be interchanged in the above theorem. We also remark that if $\alpha\beta=\beta\alpha$, then $(tT-2\tau)^2=(4n-t^2)(4N-T^2)$.

References.

Albert A.A., Quadratic forms permitting composition, Ann. of Math., 43 (1942) 161-7.
 Artin E., Geometric algebra, Wiley, London-New York (1957).

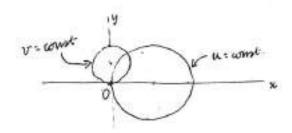
Schafer R.D., Introduction to nonassociative algebras, Academic Press, New York-London (1966).

Explanation of physical significance of 5 de(t) (see also Rothe Ollenderff & Polethausen, Theory of functions as applied to anomeering problems, Dover, p. 106)

W= = + e - 10 , Deve.

W= W+ LU

Qu. QV = 0. (orthogonal surfaces).



7 = P(r, 0)

Potential at
$$P = 97 = -20 \log |z - l_1| + 20 \log |z + l_2|$$

$$= -20 \left\{ \log |z| - l_1 + l_2 + 0(l^2) \right\}$$

$$+25 \left\{ \log |z| + l_1 + l_2 + \frac{2}{2} + 0(l^2) \right\}$$

$$\Rightarrow 4\mu \cos 0$$

$$r \Rightarrow h = lom \cdot \sigma h$$

$$L \Rightarrow 0$$

Thus Re (W) = cost corresponds to a line dipole