Commuting Cayley numbers
by P. Wynn

Abstract., Necessary and sufficient conditions are given for a and 8, belonging to
a division algebra of generalized Cayley numbers, to satisfy the relationship «g=8a.

Wa consider the alternative algebra C{F,f} of the generalized Cayley numbers
sver o field F which have the representation a=(a,B), B=(b,B),... whera a,A,b,B,...
are guaterniens over F,and multiply according to the rule ua=[ah+éﬁn,ﬂaﬁnﬁj, where
F.E are conjugate to b,B and EEF is fixed {for the theory of Cayley numbers and
assoclated references, see [1]).
Theorem., Let o,86C{F,E} where F is not of characteristic 2 and £ is not the norm of
any quaternion over F. Then af=fa if and only if either oSF or 8=hasu(i,wEF).
proof. If a,B satisfy one of the stated conditioms, then of=fa,

If asB (whers Eu{I.-n] is the conjugate of a), and F is not of characteristic 2,
then «EF. We now discount this possibility; thus, in particular, af0. If aB=ff,
then afsw say, whers wSF, Since £ is not the norm of any quaternion over F,C{F,E]} 18,
by a theorem of Albert [2]. a division algebra, and u'l exists. Hence B-uu'l-un{u}"lﬁ-
havy, where A=-wn I:u}'l'. Pe=wn [u}_lt (a)(n {a)=af (&F) and t{a)=a+5(EF) being the norm and
trace of o). We now discount the possibility that ag=Bf, By a theorem of Artin [3],
all products formed from the two fixed numbérs o,f are sssociamtive and hence, trivially
from u,ﬂ,&,ﬁ. Since af=go, these products are alsc commutative. Multiplying the
relationship [Edﬂ]ﬂ-fﬂrﬂ}u+ﬂﬁ-5u througheut by En-ﬁ&, we find that (2Tn-t1)@=
EEtN-TT'Jn*TEn-'I:IH (where t=t(a), n=n(a), T=t(8), N=n(g), t=t(c8)). Since pu-BAF0,
a=-f#0, the inverse of zTn-trnfﬂuJﬁEj[ﬂ—u] sxists. Hence B again has @ representation
of the form ha+yp (A,wEF).

By symmetry, o and @ may be interchanged in the sbove theorem. We also remark
that if cf=ga, then [tT-IT]E#[dn-tE}[IH—TZ}.
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