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Abstract

Precise locations are given for the roots with lérge modulus

of the eguation (w) P“ru{z] = g%, where Fu,u ig the approximating

fraction (Padé guotient) of order (p,v) derived from the exponential
series. With n>m, set Bm,n = k{n-m-4[ (n-m) /41} ([...] denotes

the integer part) and vy = k{1={=11"}. Let C 4o B

m,n;k

be the points of intersection in the z=x+iy plane of the eguispaced

lines parallel to the real axis y = {2k+ﬂm'h+vm}n {(k=1,2,...) and

1/ (n-m}

the exponential curve vy = Tmp+tnlfm1} exp{x/(n-m)}; let

c _j Pbe the complex conjugate of C (k=1,2;...}. Let g0

m,n; m,n;k

be a fixed arbitrarily small number. If v>p, there exists a positive
integer K, depending only upon p, v and £, such that one and only

ocne root of egquation (+) lies within the circle with centre C“ e
¥

and radius e,+k=K,F+l,... and these are the only roots of egquation ()
to lie ocutside the cirele |z| = |E“ 1Ir_k-:.l; when wep, the preceding
r F

results with C replaced by = Wik hold: when p=v; the
(] P

ksvrk

stated results are to be modified by taking the centres cp ik to
F L
be on the imaginary axis at the points 2ki if pu is even and (2k+1)4i

if p is odd, and replacing the small circles of radius ¢ by segments

of the imaginary axis of length 2s:.



1

The approximating fraction (Naherungsbruch) of order (p,w)

{H;,v=0) derived from the series

(1) Z &
k=0

k
kZ

with EDFD is that irreducible guotient Pp,u of two polynomials,
the denominator of degree = p, the numerator of degree = v, whose
series expansion in ascending powers of z agrees with (1) for the
largest possible number of initial terms. The rational functions
Pu,u were studied by Jacobi and Frobenius, and by Padé who
investigated the properties of the complete table, cobtained by
setting p,v=0,1,...,; of such guotients (for an account of the

theory, seea Ch. 5 of [31).

The approximating fractions for the exponential series may be

expressed (see [3]1%§42) in simple closed form :

Y
Z {u+u"j}1{?}zj
=0 J

(2) P, (2} =

T8
z {u+v“j}l{;}{'=]j
=0

for p,v=0,1;,... . The series expansion of the function (2} in
ascending powers of z agrees with the exponential series as far as
the term ilu*u}l]_12“+v . Basing his work on general theory due
to Pontrjagin (4], the author derived the following result [7]:
let Pp,u be the approximating fraction of order (p,v) derived
from the exponential series; if w=p {wep), there is an unbounded

number of values of z with arbitrarily large positive {negative)



real part for which

(3) e = p (z)

It is of some interest to know both that equation (3) is
satisfied at all for nonzero z and indeed that there are unboundedly
many such values of z located in a prescribed manner. MNevertheless
the above result is unhelpful in the sense that a half-plane is a
large place in which to lock for the roots of any egquation. The
result is alse to a certain extent empty : the general theory upon
which its derivation is based leads to the conclusion that an
equation of the form (3) holds for any irreducible guotient Pu,u
of two polynomials, the numerator and dencminator of degrees p and v
respectively; special knowledge concerning the coefficients of the

approximating fractions derived from the exponential series is not

used.

Results concerning the precise asymptotic location of the roots
of eguations invelving transcendental functions and raticnal functions
of a prescribed system can be based upon two supporting structures.
The first is a theory of the roots of eguations involwing the
transcendental functions themselves together with auxiliary functions
of known asymptotic bshaviour. The second is a further theory
conecerning the asymptotiec behaviour of all rational functionz of the
prescribed system. The required resulLs may then be obtained by
replacing the auxiliary functions of the first theory by the rational

functions of the second.



The claesical theory of transcendental functions abounds in
asymptotic estimates for the zeros of such functions, any one of
which may be taken as a supporting result of the first type. Upon
thie oecasion, however, use will be made of an early result due to
Hardy [1,2]:: let r = 4r' + R (0sR<3) be a nonnegative integer
(with r', R also integers) and let P(z) ~ pz® (-=<p<=, p#0) as
|z| tends to infinity, and let e»0 be a fixed arbitrarily small
real number; there exists a positive integer K, which depends upon

e and F, such that one and only one root of the equation
(4) e® = p(z)
lies within the ecirecle with centre

Ek = Infp| + eIn{(2|k|+5R)n} + i{2k+% (R+1-siqgni{p)) In

and radius e,*k=K,K+l,..., and these are the only roots of eguation
(4) to lie outside the circle |z| = |€4-e]l. Results involving
combinations of exponential and polynomial functions,of this nature,
have many applications; a survey of more recent work in this

direction is given in [5].

The approximating fractions derived from a series of the form {1}
constitute a well-defined system. It has been shown [6] by the author

that the functions Pp i with v2u derived from the series (1) with

r

coefficients

k-1 & - g%**

{5) g = N ( ——)
k =0 C = qT+t



may be expressed in simple closed form. An exact expression may,

in particular, be derived for pu'u = ﬂu,u:u i Eﬂ'u:u s Where
W T AR
Ty, vev and ﬂu;v;u are the coefficients of = and =z in the
numerator and denominator polynomials of PFL N For large |[z|
P
=i
(6} Pp,viz} ~Puy E .

Letting A or C tend to infinity and introducing a suitable change of
variable z, or taking 21 or C=l1l and letting g tend to unity, a
number of special forms of the above general approximating fraction
P may be obtained. Each special form is accompanied by a

Bpv
corresponding form of the constant pu y and, in conseguence, a

.
corresponding estimate (6). These estimates furnish examples of
gupporting results of the second type mentioned above. They may
be used in conjunction with Hardy's result to furnish precise
estimates of the location of the roots of aguations (3) with w=p .,
where now Pp,v represents an approximating fraction derived from
the series with coefficients given by formula (5), or one of the

spacial fractions obtainable from this general form.

One of the latter special fractions is that ecbtained from the
series with coefficients ¢k=[kl}-l. i.e. the exponential =series.
Evidently equation (3) assumes special interest when the approximating
fraction Pu,u concerned is derived from the exponential series,

The corresponding derivatives of the functions upon each side of

equation (3), wup to and including that of order p+v, are egual

in value when z=0; expressed loosely, for the Fu y in gquestion,

(3



equation (3) is satisfied ptv+l times at the origin. As will be
shown, it is satisfied for unboundedly many values of z whose precise
location may be given. The approximating fractions derived from

the exponential series are of further interest in that they satisfy

-1

the relationships P #:3} = P'u -z {ppev=0,1,...). If eguation

] P
(3) is satisfied WhE: z=z', it is also satisfied with p and v
interchanged and z=-2'; results concerning the location of the
roots of egquation (3) may be given for all u,vz0, and are not
confined teo the case in which w2zu. For the approximating fraction
Fp.v derived from the exponential series, the term Py in
formula (6} is given by

= =73k
pq.t,u (=1}t vl

(This result can be derived from the general theory concerning series
with coefficients given by formula (5), or may be taken directly

from formula (2).)

The following result may be stated : let Pu , (2} be the
- F

approximating fraction of order (p,v) derived from the exponential

series (p,v=0); with Bm,n = kin-m-4[ (n=m} 41} ([...] denotes
the integer part) and o = k{1-(-1)"}, set

m!
= IHE::] + (n-m) zu{:z|ki+ﬁm_nln} + i{ik"ﬂm,n*?m}"

QM,n:k
fﬂr m-n.llr---; n;mjm'flir--: k-=---.;-lpu;l;|ri-i- and let £=0 be
a fixed arbitrarily small real number; when v=u, there exists a

positive integer K, which depends upon p, v and &, such that one



and only one root of equation (3) lies within the eircle with centre

Cp vik @nd radius e,+k=K,K+l,... and these are the only roots of
[ e

equation (3) to lie outside the circle lz| = |r:|_l u-H“E]I when

v<p, the preceding result with ‘replaced by -C holds

Revik v,k

true.
When n>m, the points Cm,n-k with k=K lie at the intersections
in the z=x+iy plane of the equispaced lines parallel to the real axis

¥ = tzk*ﬁm,n+7h}" (k=K,K+l,...) and the exponential curve

nl 1/ (n=m)
¥rope (=] exp(—1] .
ml n=m

The corresponding points obtained by reversing the sign of k are
simply the complex conjugates of the abave intersection points. When
v=u, the centres Eu,v;k of the circles within which the roots of
egquations (3) lie are at intersection points as described above with
m,n replaced by p,v ([these centres all lie in the right half-plane
Re(z)=0). When w<u, the centres of the cireles in question are at
the reflections, in the imaginary axis, of the abeve intersection
points as described above with m,n replaced by v,0 (the centres now

lie in the left half-plane Ra(z)<0}.

When p=v, the centres of the circles within which the roots of
egquation (3) lie are located upon the imaginary axis at the points
2ki when p is even and (2k+1)i when u is odd (th=F,K+l,...).
However, it has been shown [8,9] that in this case the roots of
equation (3) are pure imaginary; they are thus contained in small
segments of the imaginary axis of length 2: and with midpoints at

the above system of centres.
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