Difference between revisions of "Solutions of Differential Equations"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Created page with "A solution of a differential equation is an expression of the dependent variable that satisfies the relation established in the differential equation. For example, the solutio...")
 
Line 8: Line 8:
  
 
==Resources==
 
==Resources==
 +
* [http://www.maths.gla.ac.uk/~cc/2x/2005_2xnotes/2x_chap5.pdf Differential Equations],

Revision as of 19:30, 17 September 2021

A solution of a differential equation is an expression of the dependent variable that satisfies the relation established in the differential equation. For example, the solution of will be some equation y = f(x) such that y and its first derivative, y', satisfy the relation Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y' + y - 2 = 4x } . The general solution of a differential equation will have one or more arbitrary constants, depending on the order of the original differential equation (the solution of a first order diff. eq. will have one arbitrary constant, a second order one will have two, etc.).

Examples:

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y' = 2x } . Through simple integration, we can calculate the general solution of this equation to be Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = x^2 + C} , where C is an arbitrary constant.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y' - y = 0 } . The G.S. is . Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y' = Ce^{x} } , so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y' - y = 0 \to Ce^{x} - Ce^{x} = 0} , so this solution satisfies the relationship for all arbitrary constants C.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y' + y - 2 = 0 } . The G.S. is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = Ce^{-x} + 2 } . , so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 = y' + y - 2 } becomes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 = -Ce^{-x} + Ce^{-x} + 2 - 2 = 0 } .


Resources