Difference between revisions of "Complex Numbers"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
Line 1: Line 1:
A complex number is a number of the form <math> a + bi </math> where <math> a </math> is the real part of the complex number, and <math> bi </math> is the imaginary part of the complex number. If <math> b = 0 </math>, then <math> a + bi </math> is a real number. If <math> a = 0 </math> and b is not equal to 0, the complex number is called an imaginary number. The imaginary unit <math> i = \sqrt{-1}</math>, and can be used to express other imaginary numbers (for example, <math> \sqrt{-25} = 5\sqrt{-1} = 5i </math>). <math> i^2 = -1 </math>, <math> i^3 = -i </math>, <math> i^4 = 1 </math>, <math> i^5 = i </math> again, and so on.
+
A complex number is a number of the form <math> a + bi </math> where <math> a </math> is the real part of the complex number, and <math> bi </math> is the imaginary part of the complex number. If <math> b = 0 </math>, then <math> a + bi </math> is a real number. If <math> a = 0 </math> and b is not equal to 0, the complex number is called an imaginary number. The imaginary unit <math> i = \sqrt{-1}</math>, and can be used to express other imaginary numbers (for example, <math> \sqrt{-25} = 5\sqrt{-1} = 5i </math>).
  
 
==Resources==
 
==Resources==
 
* [https://tutorial.math.lamar.edu/classes/alg/ComplexNumbers.aspx Complex Numbers], Paul's Online Notes
 
* [https://tutorial.math.lamar.edu/classes/alg/ComplexNumbers.aspx Complex Numbers], Paul's Online Notes
 
* [https://courses.lumenlearning.com/collegealgebra2017/chapter/introduction-complex-numbers/ Intro to Complex Numbers], Lumen Learning
 
* [https://courses.lumenlearning.com/collegealgebra2017/chapter/introduction-complex-numbers/ Intro to Complex Numbers], Lumen Learning

Revision as of 13:03, 20 September 2021

A complex number is a number of the form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a + bi } where is the real part of the complex number, and is the imaginary part of the complex number. If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = 0 } , then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a + bi } is a real number. If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = 0 } and b is not equal to 0, the complex number is called an imaginary number. The imaginary unit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i = \sqrt{-1}} , and can be used to express other imaginary numbers (for example, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{-25} = 5\sqrt{-1} = 5i } ).

Resources