Difference between revisions of "Functions:Definition"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
Line 1: Line 1:
[[File:Example of an arrow diagram of a function <math> f:A\to B </math>.svg|Arrow_diagram_of_a_function_(non-injective_and_non-surjective)]]
+
[[File:Arrow diagram of a function (non-injective and non-surjective).svg|thumb|Example of an arrow diagram of a function <math> f:A\to B </math>]]
  
 
A function (or "mapping") is a relationship between two sets <math> A </math> and <math> B </math> that maps each input <math> a\in A </math> to exactly one output <math> b\in B </math>. A function <math> f </math> that maps elements of the set <math> A </math> to elements in the set <math> B </math> is denoted as <math> f: A\to B </math>, where <math> A </math> is the domain of <math> f </math> and <math> B </math> is the codomain. We can also think of a function <math> f: A\to B </math> as a set of ordered pairs <math> (a, b) </math>, <math> a\in A </math> and <math> b\in B </math>, such that each element <math> a </math> is paired with exactly one element <math> b </math>. If a function <math> f: A\to B </math> maps an input <math> a </math> to an output <math> b </math>, we can write that <math> f(a) = b </math>. For finite, reasonably small sets, we can depict a function graphically (see image).
 
A function (or "mapping") is a relationship between two sets <math> A </math> and <math> B </math> that maps each input <math> a\in A </math> to exactly one output <math> b\in B </math>. A function <math> f </math> that maps elements of the set <math> A </math> to elements in the set <math> B </math> is denoted as <math> f: A\to B </math>, where <math> A </math> is the domain of <math> f </math> and <math> B </math> is the codomain. We can also think of a function <math> f: A\to B </math> as a set of ordered pairs <math> (a, b) </math>, <math> a\in A </math> and <math> b\in B </math>, such that each element <math> a </math> is paired with exactly one element <math> b </math>. If a function <math> f: A\to B </math> maps an input <math> a </math> to an output <math> b </math>, we can write that <math> f(a) = b </math>. For finite, reasonably small sets, we can depict a function graphically (see image).

Revision as of 12:15, 27 September 2021

Example of an arrow diagram of a function

A function (or "mapping") is a relationship between two sets and that maps each input to exactly one output . A function that maps elements of the set to elements in the set is denoted as , where is the domain of and is the codomain. We can also think of a function as a set of ordered pairs , and , such that each element is paired with exactly one element . If a function maps an input to an output , we can write that . For finite, reasonably small sets, we can depict a function graphically (see image).

Note: a function cannot map one input to more than one output, but it can map more than one input to the same output. For example, let and , and . If is a relation such that and , then is NOT a function. However, a relation such that and IS a valid function.

Examples:

  • Let and , and let such that , , , , and . Since each element of the domain maps to exactly one element (that is, there is no and such that ), is a function.
  • For sets and in the previous example, let be a relation such that , , , , and . Since maps the input to two distinct outputs, this relation is NOT a valid function.
  • Let such that . This is a function, since each maps to exactly one element .
  • Let such that . This is not a valid function, since for , can equal both and , and for .

Resources