Difference between revisions of "Equation of a Circle"
Line 24: | Line 24: | ||
* [https://www.khanacademy.org/math/geometry/xff63fac4:hs-geo-conic-sections/hs-geo-circle-expanded-equation/a/circle-equation-review Circle Equation Review], Khan Academy | * [https://www.khanacademy.org/math/geometry/xff63fac4:hs-geo-conic-sections/hs-geo-circle-expanded-equation/a/circle-equation-review Circle Equation Review], Khan Academy | ||
* [https://www.khanacademy.org/math/geometry/xff63fac4:hs-geo-conic-sections/hs-geo-circle-standard-equation/v/radius-and-center-for-a-circle-equation-in-standard-form Standard Form of Circle Equation], Khan Academy | * [https://www.khanacademy.org/math/geometry/xff63fac4:hs-geo-conic-sections/hs-geo-circle-standard-equation/v/radius-and-center-for-a-circle-equation-in-standard-form Standard Form of Circle Equation], Khan Academy | ||
+ | * [https://en.wikipedia.org/wiki/Circle Circle], Wikipedia |
Revision as of 14:32, 18 October 2021
Cartesian coordinates
In an x–y Cartesian coordinate system, the circle with center coordinates (a, b) and radius r is the set of all points (x, y) such that
This equation, known as the equation of the circle, follows from the Pythagorean theorem applied to any point on the circle: as shown in the adjacent diagram, the radius is the hypotenuse of a right-angled triangle whose other sides are of length |x − a| and |y − b|. If the circle is centred at the origin (0, 0), then the equation simplifies to
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2 + y^2 = r^2.}
Parametric form
The equation can be written in parametric form using the trigonometric functions sine and cosine as
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = a + r\,\cos t,}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = b + r\,\sin t,}
where t is a parametric variable in the range 0 to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\pi} , interpreted geometrically as the angle that the ray from (a, b) to (x, y) makes with the positive x axis.
An alternative parametrisation of the circle is
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = a + r \frac{1 - t^2}{1 + t^2},}
In this parameterisation, the ratio of t to r can be interpreted geometrically as the stereographic projection of the line passing through the centre parallel to the x axis (see Tangent half-angle substitution). However, this parameterisation works only if t is made to range not only through all reals but also to a point at infinity; otherwise, the leftmost point of the circle would be omitted.
Resourcs
- Circle Equation Review, Khan Academy
- Standard Form of Circle Equation, Khan Academy
- Circle, Wikipedia