Difference between revisions of "Real Function Limits:Sequential Criterion"
Line 1: | Line 1: | ||
The Sequential Criterion for a Limit of a Function | The Sequential Criterion for a Limit of a Function | ||
− | <p>We will now look at a very important theorem known as The Sequential Criterion for a Limit which merges the concept of the limit of a function | + | <p>We will now look at a very important theorem known as The Sequential Criterion for a Limit which merges the concept of the limit of a function <math>f</math> at a cluster point <math>c</math> from <math>A</math> with regards to sequences <math>(a_n)</math> from <math>A</math> that converge to <math>c</math>.</p> |
<table class="wiki-content-table"> | <table class="wiki-content-table"> | ||
<tr> | <tr> | ||
− | <td><strong>Theorem 1 (The Sequential Criterion for a Limit of a Function):</strong> Let | + | <td><strong>Theorem 1 (The Sequential Criterion for a Limit of a Function):</strong> Let <math>f : A \to \mathbb{R}</math> be a function and let <math>c</math> be a cluster point of <math>A</math>. Then <math>\lim_{x \to c} f(x) = L</math> if and only if for all sequences <math>(a_n)</math> from the domain <math>A</math> where <math>a_n \neq c</math> <math>\forall n \in \mathbb{N}</math> and <math>\lim_{n \to \infty} a_n = c</math> then <math>\lim_{n \to \infty} f(a_n) = L</math>.</td> |
</tr> | </tr> | ||
</table> | </table> | ||
− | <p>Consider a function | + | <p>Consider a function <math>f</math> that has a limit <math>L</math> when <math>x</math> is close to <math>c</math>. Now consider all sequences <math>(a_n)</math> from the domain <math>A</math> where these sequences converge to <math>c</math>, that is <math>\lim_{n \to \infty} a_n = c</math>. The Sequential Criterion for a Limit of a Function says that then that as <math>n</math> goes to infinity, the function <math>f</math> evaluated at these <math>a_n</math> will have its limit go to <math>L</math>.</p> |
− | <p>For example, consider the function | + | <p>For example, consider the function <math>f: \mathbb{R} \to \mathbb{R}</math> defined by the equation <math>f(x) = x</math>, and suppose we wanted to compute <math>\lim_{x \to 0} x</math>. We should already know that this limit is zero, that is <math>\lim_{x \to 0} x = 0</math>. Now consider the sequence <math>(a_n) = \left ( \frac{1}{n} \right)</math>. This sequence <math>(a_n)</math> is clearly contained in the domain of <math>f</math>. Furthermore, this sequence converges to 0, that is <math>\lim_{n \to \infty} \frac{1}{n} = 0</math>. If all such sequences <math>(a_n)</math> that converge to <math>0</math> have the property that <math>(f(a_n))</math> converges to <math>f(0) = 0</math>, then we can say that <math>\lim_{n \to 0} f(x) = 0</math>.</p> |
<p>We will now look at the proof of The Sequential Criterion for a Limit of a Function.</p> | <p>We will now look at the proof of The Sequential Criterion for a Limit of a Function.</p> | ||
<ul> | <ul> | ||
− | <li><strong>Proof:</strong> | + | <li><strong>Proof:</strong> <math>\Rightarrow</math> Suppose that <math>\lim_{x \to c} f(x) = L</math>, and let <math>(a_n)</math> be a sequence in <math>A</math> such that <math>a_n \neq c</math> <math>\forall n \in \mathbb{N}</math> such that <math>\lim_{n \to \infty} a_n = c</math>. We thus want to show that <math>\lim_{n \to \infty} f(a_n) = L</math>.</li> |
</ul> | </ul> | ||
<ul> | <ul> | ||
− | <li>Let | + | <li>Let <math>\epsilon > 0</math>. We are given that <math>\lim_{x \to c} f(x) = L</math> and so for <math>\epsilon > 0</math> there exists a <math>\delta > 0</math> such that if <math>x \in A</math> and <math>0 < \mid x - c \mid < \delta</math> then we have that <math>\mid f(x) - L \mid < \epsilon</math>. Now since <math>\delta > 0</math>, since we have that <math>\lim_{n \to \infty} a_n = c</math> then there exists an <math>N \in \mathbb{N}</math> such that if <math>n ≥ N</math> then <math>\mid a_n - c \mid < \delta</math>. Therefore <math>a_n \in V_{\delta} (c) \cap A</math>.</li> |
</ul> | </ul> | ||
<ul> | <ul> | ||
− | <li>Therefore it must be that | + | <li>Therefore it must be that <math>\mid f(a_n) - L \mid < \epsilon</math>, in other words, <math>\forall n ≥ N</math> we have that <math>\mid f(a_n) - L \mid < \epsilon</math> and so <math>\lim_{n \to \infty} f(a_n) = L</math>.</li> |
</ul> | </ul> | ||
<ul> | <ul> | ||
− | <li> | + | <li><math>\Leftarrow</math> Suppose that for all <math>(a_n)</math> in <math>A</math> such that <math>a_n \neq c</math> <math>\forall n \in \mathbb{N}</math> and <math>\lim_{n \to \infty} a_n = c</math>, we have that <math>\lim_{n \to \infty} f(a_n) = L</math>. We want to show that <math>\lim_{x \to c} f(x) = L</math>.</li> |
</ul> | </ul> | ||
<ul> | <ul> | ||
− | <li>Suppose not, in other words, suppose that | + | <li>Suppose not, in other words, suppose that <math>\exists \epsilon_0 > 0</math> such that <math>\forall \delta > 0</math> then <math>\exists x_{\delta} \in A \cap V_{\delta} (c) \setminus \{ c \}</math> such that <math>\mid f(x_{\delta}) - L \mid ≥ \epsilon_0</math>. Let <math>\delta_n = \frac{1}{n}</math>. Then there exists <math>x_{\delta_n} = a_n \in A \cap V_{\delta_n} (c) \setminus \{ c \}</math>, in other words, <math>0 < \mid a_n - c \mid < \frac{1}{n}</math> and <math>\lim_{n \to \infty} a_n = c</math>. However, <math>\mid f(a_n) - L \mid ≥ \epsilon_0</math> so <math>\lim_{n \to \infty} f(a_n) \neq L</math>, a contradiction. Therefore <math>\lim_{x \to c} f(x) = L</math>. <math>\blacksquare</math></li> |
</ul> | </ul> | ||
− | |||
==Resources== | ==Resources== | ||
* [http://mathonline.wikidot.com/the-sequential-criterion-for-a-limit-of-a-function The Sequential Criterion for a Limit of a Function] | * [http://mathonline.wikidot.com/the-sequential-criterion-for-a-limit-of-a-function The Sequential Criterion for a Limit of a Function] |
Revision as of 09:38, 20 October 2021
The Sequential Criterion for a Limit of a Function
We will now look at a very important theorem known as The Sequential Criterion for a Limit which merges the concept of the limit of a function at a cluster point from with regards to sequences from that converge to .
Theorem 1 (The Sequential Criterion for a Limit of a Function): Let be a function and let be a cluster point of . Then if and only if for all sequences from the domain where and then . |
Consider a function that has a limit when is close to . Now consider all sequences from the domain where these sequences converge to , that is . The Sequential Criterion for a Limit of a Function says that then that as goes to infinity, the function evaluated at these will have its limit go to .
For example, consider the function defined by the equation , and suppose we wanted to compute . We should already know that this limit is zero, that is . Now consider the sequence . This sequence is clearly contained in the domain of . Furthermore, this sequence converges to 0, that is . If all such sequences that converge to have the property that converges to , then we can say that .
We will now look at the proof of The Sequential Criterion for a Limit of a Function.
- Proof: Suppose that , and let be a sequence in such that such that . We thus want to show that .
- Let Failed to parse (syntax error): {\displaystyle \epsilon > 0} . We are given that and so for Failed to parse (syntax error): {\displaystyle \epsilon > 0} there exists a Failed to parse (syntax error): {\displaystyle \delta > 0} such that if and Failed to parse (syntax error): {\displaystyle 0 < \mid x - c \mid < \delta} then we have that Failed to parse (syntax error): {\displaystyle \mid f(x) - L \mid < \epsilon} . Now since Failed to parse (syntax error): {\displaystyle \delta > 0} , since we have that then there exists an such that if Failed to parse (syntax error): {\displaystyle n ≥ N} then Failed to parse (syntax error): {\displaystyle \mid a_n - c \mid < \delta} . Therefore .
- Therefore it must be that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mid f(a_n) - L \mid < \epsilon} , in other words, Failed to parse (syntax error): {\displaystyle \forall n ≥ N} we have that Failed to parse (syntax error): {\displaystyle \mid f(a_n) - L \mid < \epsilon} and so .
- Suppose that for all in such that and , we have that . We want to show that .
- Suppose not, in other words, suppose that Failed to parse (syntax error): {\displaystyle \exists \epsilon_0 > 0} such that Failed to parse (syntax error): {\displaystyle \forall \delta > 0} then such that Failed to parse (syntax error): {\displaystyle \mid f(x_{\delta}) - L \mid ≥ \epsilon_0} . Let . Then there exists , in other words, Failed to parse (syntax error): {\displaystyle 0 < \mid a_n - c \mid < \frac{1}{n}} and . However, Failed to parse (syntax error): {\displaystyle \mid f(a_n) - L \mid ≥ \epsilon_0} so , a contradiction. Therefore .