Difference between revisions of "The Continuous Extension Theorem"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Created page with " ==Resources== * [http://mathonline.wikidot.com/the-continuous-extension-theorem The Continuous Extension Theorem], mathonline.wikidot.com")
 
Line 1: Line 1:
 +
<p>Recall that from <a href="/the-uniform-continuity-theorem">The Uniform Continuity Theorem</a> that if a function <math>I = [a, b]</math> is a closed and bounded interval and <math>f : I \to \mathbb{R}</math> is continuous on <math>I</math>, then <math>f</math> must also be uniformly continuous on <math>I</math>. The succeeding theorem will help us determine when a function <math>f</math> is uniformly continuous when <math>I</math> is instead a bounded open interval.</p>
 +
<p>Before we look at The Continuous Extension Theorem though, we will need to prove the following lemma.</p>
 +
<table class="wiki-content-table">
 +
<tr>
 +
<td><strong>Lemma 1:</strong> If <math>f : A \to \mathbb{R}</math> is a uniformly continuous function and if <math>(x_n)</math> is a <a class="newpage" href="/cauchy-sequences">Cauchy Sequence</a> from <math>A</math>, then <math>(f(x_n))</math> is a Cauchy sequence from <math>\mathbb{R}</math>.</td>
 +
</tr>
 +
</table>
 +
<ul>
 +
<li><strong>Proof:</strong> Let <math>f : A \to \mathbb{R}</math> be a uniformly continuous function and let <math>(x_n)</math> be a Cauchy sequence from <math>A</math>. We want to show that <math>(f(x_n))</math> is also a Cauchy sequence. Recall that to show that <math>(f(x_n))</math> is a Cauchy sequence we must show that <math>\forall \varepsilon > 0</math> then <math>\exists N \in \mathbb{N}</math> such that <math>\forall m, n \in \mathbb{N}</math>, if <math>m, n \geq N</math> then <math>\mid f(x_n) - f(x_m) \mid < \varepsilon</math>.</li>
 +
</ul>
 +
<ul>
 +
<li>Since <math>f</math> is uniformly continuous on <math>A</math>, then for any <math>\varepsilon > 0</math>, <math>\exists \delta_{\varepsilon} . 0</math> such that for all <math>x, y \in A</math> where <math>\mid x - y \mid < \delta_{\varepsilon}</math> we have that <math>\mid f(x) - f(y) \mid < \varepsilon</math>.</li>
 +
</ul>
 +
<ul>
 +
<li>Now for <math>\delta_{\varepsilon} > 0</math>, since <math>(x_n)</math> is a Cauchy sequence then <math>\exists N_{\delta_{\varepsilon}} \in \mathbb{N}</math> such that <math>\forall m, n \geq N_{\delta_{\varepsilon}}</math> we have that <math>\mid x_n - x_M \mid < \delta_{\varepsilon}</math>. So this <math>N_{\delta_{\varepsilon}}</math> will do for the sequence <math>(f(x_n))</math>. So for all <math>n, m \geq N_{\delta_{\varepsilon}}</math> we have that <math>\mid x_n - x_m \mid < \delta_{\varepsilon}</math> and from the continuity of <math>f</math> this implies that <math>\mid f(x_n) - f(x_m) \mid < \varepsilon</math> and so <math>(f(x_n))</math> is a Cauchy sequence. <math>\blacksquare</math></li>
 +
</ul>
 +
<p>We are now ready to look at The Continuous Extension Theorem.</p>
 +
<table class="wiki-content-table">
 +
<tr>
 +
<td><strong>Theorem 1 (The Continuous Extension Theorem):</strong> If <math>I = (a,b)</math> is an interval, then <math>f : I \to \mathbb{R}</math> is a uniformly continuous function on <math>I</math> if and only if <math>f</math> can be defined at the endpoints <math>a</math> and <math>b</math> such that <math>f</math> is continuous on <math>[a, b]</math>.</td>
 +
</tr>
 +
</table>
 +
<ul>
 +
<li><strong>Proof:</strong> <math>\Rightarrow</math> Suppose that <math>f</math> is uniformly continuous on <math>I = (a, b)</math>. Let <math>(x_n)</math> be a sequence in <math>(a,b)</math> that converges to <math>a</math>. Then since <math>(x_n)</math> is a convergent sequence, it must also be a Cauchy sequence. By lemma 1, since <math>(x_n)</math> is a Cauchy sequence then <math>(f(x_n))</math> is also a Cauchy sequence, and so <math>(f(x_n))</math> must converge in <math>\mathbb{R}</math>, that is <math>\lim_{n \to \infty} f(x_n) = L</math> for some <math>L \in \mathbb{R}</math>.</li>
 +
</ul>
 +
<ul>
 +
<li>Now suppose that <math>(y_n)</math> is another sequence in <math>(a, b)</math> that converges to <math>a</math>. Then <math>\lim_{n \to \infty} (x_n - y_n) = a - a = 0</math>, and so by the uniform continuity of <math>f</math>:</li>
 +
</ul>
 +
<span class="equation-number">(1)
 +
<div class="math-equation" id="equation-1">\begin{align} \lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} [f(y_n) - f(x_n) + f(x_n)] \\ \lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} [f(y_n) - f(x_n) ] + \lim_{n \to \infty} f(x_n) \\ \lim_{n \to \infty} f(y_n) = 0 + L = L \end{align}</div>
 +
<ul>
 +
<li>So for every sequence <math>(y_n)</math> in <math>(a, b)</math> that converges to <math>a</math>, we have that <math>(f(y_n))</math> converges to <math>L</math>. Therefore by the Sequential Criterion for Limits, we have that <math>f</math> has the limit <math>L</math> at the point <math>a</math>. Therefore, define <math>f(a) = L</math> and so <math>f</math> is continuous at <math>a</math>. We use the same argument for the endpoint <math>b</math>, and so <math>f</math> is can be extended so that <math>f</math> is continuous on <math>[a, b]</math>.</li>
 +
</ul>
 +
<ul>
 +
<li><math>\Leftarrow</math> Suppose that <math>f</math> is continuous on <math>[a, b]</math>. By <a href="/the-uniform-continuity-theorem">The Uniform Continuity Theorem</a>, since <math>[a, b]</math> is a closed and bounded interval then <math>f</math> is uniformly continuous. <math>\blacksquare</math></li>
 +
</ul>
  
  
 
==Resources==
 
==Resources==
 
* [http://mathonline.wikidot.com/the-continuous-extension-theorem The Continuous Extension Theorem], mathonline.wikidot.com
 
* [http://mathonline.wikidot.com/the-continuous-extension-theorem The Continuous Extension Theorem], mathonline.wikidot.com

Revision as of 12:36, 20 October 2021

Recall that from <a href="/the-uniform-continuity-theorem">The Uniform Continuity Theorem</a> that if a function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I = [a, b]} is a closed and bounded interval and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f : I \to \mathbb{R}} is continuous on , then must also be uniformly continuous on . The succeeding theorem will help us determine when a function is uniformly continuous when is instead a bounded open interval.

Before we look at The Continuous Extension Theorem though, we will need to prove the following lemma.

Lemma 1: If is a uniformly continuous function and if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_n)} is a <a class="newpage" href="/cauchy-sequences">Cauchy Sequence</a> from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} , then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f(x_n))} is a Cauchy sequence from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}} .
  • Proof: Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f : A \to \mathbb{R}} be a uniformly continuous function and let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_n)} be a Cauchy sequence from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} . We want to show that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f(x_n))} is also a Cauchy sequence. Recall that to show that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f(x_n))} is a Cauchy sequence we must show that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall \varepsilon > 0} then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exists N \in \mathbb{N}} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall m, n \in \mathbb{N}} , if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m, n \geq N} then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mid f(x_n) - f(x_m) \mid < \varepsilon} .
  • Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is uniformly continuous on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} , then for any Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon > 0} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exists \delta_{\varepsilon} . 0} such that for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x, y \in A} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mid x - y \mid < \delta_{\varepsilon}} we have that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mid f(x) - f(y) \mid < \varepsilon} .
  • Now for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta_{\varepsilon} > 0} , since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_n)} is a Cauchy sequence then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exists N_{\delta_{\varepsilon}} \in \mathbb{N}} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall m, n \geq N_{\delta_{\varepsilon}}} we have that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mid x_n - x_M \mid < \delta_{\varepsilon}} . So this Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_{\delta_{\varepsilon}}} will do for the sequence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f(x_n))} . So for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n, m \geq N_{\delta_{\varepsilon}}} we have that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mid x_n - x_m \mid < \delta_{\varepsilon}} and from the continuity of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} this implies that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mid f(x_n) - f(x_m) \mid < \varepsilon} and so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f(x_n))} is a Cauchy sequence. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \blacksquare}

We are now ready to look at The Continuous Extension Theorem.

Theorem 1 (The Continuous Extension Theorem): If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I = (a,b)} is an interval, then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f : I \to \mathbb{R}} is a uniformly continuous function on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I} if and only if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} can be defined at the endpoints Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is continuous on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a, b]} .
  • Proof: Suppose that is uniformly continuous on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I = (a, b)} . Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_n)} be a sequence in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a,b)} that converges to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} . Then since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_n)} is a convergent sequence, it must also be a Cauchy sequence. By lemma 1, since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_n)} is a Cauchy sequence then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f(x_n))} is also a Cauchy sequence, and so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f(x_n))} must converge in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}} , that is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \to \infty} f(x_n) = L} for some Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L \in \mathbb{R}} .
  • Now suppose that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (y_n)} is another sequence in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a, b)} that converges to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} . Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \to \infty} (x_n - y_n) = a - a = 0} , and so by the uniform continuity of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} :

(1)

\begin{align} \lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} [f(y_n) - f(x_n) + f(x_n)] \\ \lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} [f(y_n) - f(x_n) ] + \lim_{n \to \infty} f(x_n) \\ \lim_{n \to \infty} f(y_n) = 0 + L = L \end{align}
  • So for every sequence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (y_n)} in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a, b)} that converges to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} , we have that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f(y_n))} converges to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} . Therefore by the Sequential Criterion for Limits, we have that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} has the limit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} at the point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} . Therefore, define Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(a) = L} and so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is continuous at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} . We use the same argument for the endpoint Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} , and so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is can be extended so that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is continuous on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a, b]} .
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Leftarrow} Suppose that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is continuous on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a, b]} . By <a href="/the-uniform-continuity-theorem">The Uniform Continuity Theorem</a>, since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a, b]} is a closed and bounded interval then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is uniformly continuous. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \blacksquare}


Resources