Difference between revisions of "Relative Extrema and Convex Functions"
Line 1: | Line 1: | ||
− | + | ==Convex and Concave Functions== | |
+ | <blockquote style="background: white; border: 1px solid black; padding: 1em;"> | ||
+ | :'''Definition''': A function <math>f : I \to \mathbb{R}</math> is said to be '''Convex''' if for every <math>x, y \in I</math> and for every <math>t \in [0, 1]</math> we have that | ||
+ | :<math>f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y)</math>. | ||
+ | :A function <math>f : I \to \mathbb{R}</math> is said to be '''Concave''' if for every <math>x, y \in I</math> and for every <math>t \in [0, 1]</math> we have that | ||
+ | :<math>f(tx + (1 - t)y) \geq tf(x) + (1 - t)f(y)</math>.</td> | ||
+ | </blockquote> | ||
− | http://mathonline.wikidot.com/convex-and-concave-functions | + | We now give equivalent definitions for convex and concave functions. |
+ | <blockquote style="background: white; border: 1px solid black; padding: 1em;"> | ||
+ | :'''Theorem 1:''' Let <math>f : I \to \mathbb{R}</math>.<br /> | ||
+ | :'''a)''' <math>f</math> is convex on <math>I</math> if and only if for all <math>a, b, c \in I</math> with <math>a < b < c</math> we have that <math>\displaystyle{\frac{f(b) - f(a)}{b - a} \leq \frac{f(c) - f(a)}{c - a}}</math>.<br /> | ||
+ | :'''b)''' <math>f</math> is concave on <math>I</math> if and only if for all <math>a, b, c \in I</math> with <math>a < b < c</math> we have that <math>\displaystyle{\frac{f(b) - f(a)}{b - a} \geq \frac{f(c) - f(a)}{c - a}}</math>.</td> | ||
+ | </blockquote> | ||
+ | |||
+ | We only prove (a) above. The proof of (b) is analogous.</em></p> | ||
+ | *'''Proof of a):''' Let ><math>a, b, c \in I</math> be such that <math>a < b < c</math>.</li> | ||
+ | |||
+ | *<math>\Rightarrow</math> Suppose that <math>f</math> is convex on <math>I</math>. Then for all <math>t \in [0, 1]</math> we have that:</li> | ||
+ | <div style="text-align: center;"><math>\begin{align} \quad f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y) \end{align}</math></div> | ||
+ | *Set <math>a = x</math>, <math>b = tx + (1-t)y</math>, and <math>c = y</math>. Combining the first and third equations with the second equation gives us:</li> | ||
+ | <div style="text-align: center;"><math>\begin{align} \quad b = ta + (1-t)c \end{align}</math></div> | ||
+ | *Solving for <math>t</math> gives us:</li> | ||
+ | <div style="text-align: center;"><math>\begin{align} \quad b = ta + c - tc \\ \quad b - c = t(a - c) \\ \end{align}</math></div> | ||
+ | *Therefore: | ||
+ | <div style="text-align: center;"><math>\begin{align} \quad t = \frac{b - c}{a - c} = \frac{c - b}{c - a} \end{align}</math></div> | ||
+ | *Similarly, we compute <math>1 - t</math> to be:</li> | ||
+ | <div style="text-align: center;"><math>\begin{align} \quad 1 - t = \frac{c - a}{c - a} - \frac{c - b}{c - a} = \frac{b - a}{c - a} \end{align}</math></div> | ||
+ | *From the convexity of <math>f</math> we have <math>f(tx + (1-t)y) \leq tf(x) + (1-t)f(y)</math>, or equivalently:</li> | ||
+ | <div style="text-align: center;"><math>\begin{align} \quad f(b) \leq \frac{c - b}{c - a}f(a) + \frac{b - a}{c - a}f(c) \\ \end{align}</math></div> | ||
+ | *And hence:</li> | ||
+ | <div style="text-align: center;"><math>\begin{align} \quad (c - a)f(b) \leq (c - b)f(a) + (b - a)f(c) = (c - a + a - b)f(a) + (b - a)f(c) = (c - a)f(a) - (b - a)f(a) + (b - a)f(c) \end{align}</math></div> | ||
+ | *Therefore:</li> | ||
+ | <div style="text-align: center;"><math>\begin{align} \quad (c - a)[f(b) - f(a)] \leq (b - a)[f(c) - f(a)] \quad \Leftrightarrow \quad \frac{f(b) - f(a)}{b - a} \leq \frac{f(c) - f(a)}{c - a} \end{align}</math></div> | ||
+ | *<math>\Leftarrow</math> Obtained by working backwards from above. <math>\blacksquare</math></li> | ||
+ | |||
+ | We state yet another important definition for convex and concave functions.</p> | ||
+ | |||
+ | <blockquote style="background: white; border: 1px solid black; padding: 1em;"> | ||
+ | :'''Theorem 2:''' Let ><math>f : I \to \mathbb{R}</math>.<br /> | ||
+ | :'''a)''' <math>f</math> is convex on ><math>I</math> if and only if for all ><math>a, b, c \in I</math> with ><math>a <; b <; c</math> we have that ><math>\displaystyle{\frac{f(b) - f(a)}{b - a} \leq \frac{f(c) - f(b)}{c - b}}</math>.<br /> | ||
+ | :'''b)''' <math>f</math> is concave on ><math>I</math> if and only if for all ><math>a, b, c \in I</math> with ><math>a <; b <; c</math> we have that ><math>\displaystyle{\frac{f(b) - f(a)}{b - a} \geq \frac{f(c) - f(b)}{c - b}}</math>.</td> | ||
+ | </blockquote> | ||
+ | |||
+ | Theorem 2 gives us a nice characterization of convex functions. It tells us that a function <math>f : I \to \mathbb{R}</math> is convex if and only if whenever we take three points <math>a, b, c \in I</math> with <math>a <; b <; c</math> we have that the slope of the line connecting <math>(a, f(a))</math> and <math>(b, f(b))</math> is less than or equal to the sope of the line connecting <math>(b, f(b))</math> and <math>(c, f(c))</math>. In other words, the slope of the line segments connecting consecutive pairs of points on the graph of <math>f</math> is increasing.</p> | ||
+ | |||
+ | We can combine theorems 1 and 2 to get a nice chain of inequalities. That is, <math>f : I \to \mathbb{R}</math> is convex if and only if for all <math>a, b, c \in I</math> with ><math>a < b < c</math> we have that:</p> | ||
+ | <div style="text-align: center;"><math>\begin{align} \frac{f(b) - f(a)}{b - a} \leq \frac{f(c) - f(a)}{c - a} \leq \frac{f(c) - f(b)}{c - b} \end{align}</math></div> | ||
+ | |||
+ | ==Licensing== | ||
+ | Content obtained and/or adapted from: | ||
+ | * [https://en.wikipedia.org/wiki/Maxima_and_minima] under a CC BY-SA license | ||
+ | * [http://mathonline.wikidot.com/convex-and-concave-functions] under a CC BY-SA license |
Revision as of 17:22, 22 October 2021
Convex and Concave Functions
- Definition: A function is said to be Convex if for every and for every we have that
- .
- A function is said to be Concave if for every and for every we have that
- .
We now give equivalent definitions for convex and concave functions.
- Theorem 1: Let .
- a) is convex on if and only if for all with we have that .
- b) is concave on if and only if for all with we have that .
We only prove (a) above. The proof of (b) is analogous.
- Proof of a): Let > be such that .
- Suppose that is convex on . Then for all we have that:
- Set , , and . Combining the first and third equations with the second equation gives us:
- Solving for gives us:
- Therefore:
- Similarly, we compute to be:
- From the convexity of we have , or equivalently:
- And hence:
- Therefore:
- Obtained by working backwards from above.
We state yet another important definition for convex and concave functions.
- Theorem 2: Let >.
- a) is convex on > if and only if for all > with > we have that >.
- b) is concave on > if and only if for all > with > we have that >.
Theorem 2 gives us a nice characterization of convex functions. It tells us that a function is convex if and only if whenever we take three points with we have that the slope of the line connecting and is less than or equal to the sope of the line connecting and . In other words, the slope of the line segments connecting consecutive pairs of points on the graph of is increasing.
We can combine theorems 1 and 2 to get a nice chain of inequalities. That is, is convex if and only if for all with > we have that:
Licensing
Content obtained and/or adapted from: