Difference between revisions of "Integrals Resulting in Inverse Trigonometric Functions"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
Line 3: Line 3:
 
<math> \int\frac{du}{a^2+u^2} =\dfrac{1}{a}\arctan \left(\dfrac{u}{a}\right) + C </math>
 
<math> \int\frac{du}{a^2+u^2} =\dfrac{1}{a}\arctan \left(\dfrac{u}{a}\right) + C </math>
  
<math> \int\frac{du}{u\sqrt{u^2 - a^2}} =\frac{1}{a}\text{\arcsec} \left(\dfrac{|u|}{a}\right) + C </math>
+
<math> \int\frac{du}{u\sqrt{u^2 - a^2}} =\frac{1}{a}\arcsec \left(\dfrac{|u|}{a}\right) + C </math>
  
 
[https://youtu.be/AE-0gXXx_j0 Integration into Inverse trigonometric functions using Substitution] by The Organic Chemistry Tutor
 
[https://youtu.be/AE-0gXXx_j0 Integration into Inverse trigonometric functions using Substitution] by The Organic Chemistry Tutor
  
 
[https://youtu.be/MdsAvt9y5ds Integrating using Inverse Trigonometric Functions] by  patrickJMT
 
[https://youtu.be/MdsAvt9y5ds Integrating using Inverse Trigonometric Functions] by  patrickJMT

Revision as of 13:48, 28 October 2021

Integration into Inverse trigonometric functions using Substitution by The Organic Chemistry Tutor

Integrating using Inverse Trigonometric Functions by patrickJMT