Difference between revisions of "Sequences"
(One intermediate revision by the same user not shown) | |||
Line 10: | Line 10: | ||
==Infinite sequences== | ==Infinite sequences== | ||
− | + | Definition of an infinite sequence | |
− | + | : An '''infinite sequence''' is a sequence with an infinite number of elements. | |
− | |||
− | An '''infinite sequence''' is a sequence with an infinite number of elements. | ||
− | |||
Infinite sequences have infinite terms. For such a sequence, we can again give a formula for any term in the sequence. For our previous sequence <math>a</math>, we can say <math>a_n = n</math> for all non-negative integers <math>n</math>. This sequence could also be denoted as <math>\left \{0,1,2,3,4,5,... \right \}</math> where the period of ellipses implies that this sequence is infinite. | Infinite sequences have infinite terms. For such a sequence, we can again give a formula for any term in the sequence. For our previous sequence <math>a</math>, we can say <math>a_n = n</math> for all non-negative integers <math>n</math>. This sequence could also be denoted as <math>\left \{0,1,2,3,4,5,... \right \}</math> where the period of ellipses implies that this sequence is infinite. | ||
Line 108: | Line 105: | ||
[https://youtu.be/IFHZQ6MaG6w Recursive Formulas For Sequences] by The Organic Chemistry Tutor | [https://youtu.be/IFHZQ6MaG6w Recursive Formulas For Sequences] by The Organic Chemistry Tutor | ||
+ | |||
+ | ==Licensing== | ||
+ | Content obtained and/or adapted from: | ||
+ | * [https://en.wikibooks.org/wiki/Calculus/Definition_of_a_Sequence Definition of a sequence, Wikibooks: Calculus] under a CC BY-SA license |
Latest revision as of 11:28, 29 October 2021
Contents
Finite Sequences
Definition of a Sequence
- A sequence is an ordered collection of terms in which repetition is allowed. The number of terms in a sequence is called the length of the sequence.
Sequences are often denoted by brackets like . Furthermore if we have a sequence such that then . The subscript must be a non-negative integer. Also notice that starts from one and counts up.
We can describe the terms in this sequence with a formula for all non-negative integers . So under this definition is not defined, and indeed is not in the sequence.
Infinite sequences
Definition of an infinite sequence
- An infinite sequence is a sequence with an infinite number of elements.
Infinite sequences have infinite terms. For such a sequence, we can again give a formula for any term in the sequence. For our previous sequence , we can say for all non-negative integers . This sequence could also be denoted as where the period of ellipses implies that this sequence is infinite.
Discrete Functions
Earlier, we defined the members of the infinite sequence as for all non-negative integers . This is known as a discrete function, discrete definition, or explicit definition. A discrete function is any function whose domain is not the set of all real or imaginary numbers, but is instead a smaller, countable set like the set of all integers or the set of all rational numbers. Note that a set differs from a sequence, but that is beyond the scope of this discussion.
Discrete functions only take “countable”, discrete domains. The set of all integers is countable, because there are not infinitely many values between two values in the set; there is no extra value between 2 and 1, as 1.5 is not an integer and is not contained in the set. Also note that given a discrete function or explicit definition, as long as the domain is discrete, the range must also be discrete. This means that if the input of a discrete function is countable, the output must also be countable.
Example 1
This is known as an arithmetic sequence. These will be discussed later.
Example 2
This result may be interesting: a sequence does not need to be a collection of integers, indeed it can be any collection, as long as it is countable. Here, we are simply taking the cosine of all integers, and any discrete function must have both a discrete domain and range.
Recursive Functions
Recursive functions, recursive formulas, or recursive definitions are formulas in which is defined in terms of . Knowing any term in a recursively defined sequence requires you to know all the terms before it, which means you must know the first term, sometimes denoted or . The first term must be defined in order to have a proper recursive sequence; it cannot be assumed that the first term is 1.
Sometimes, one can have a sequence that is necessarily defined by a recursive function. For instance, the recursively defined sequence . This sequence cannot be expressed any other "easy" way and in this kind of situation it is best to use the recursive definition.
Example 1
The sequence
is the same arithmetic sequence mentioned earlier. However, this time it uses a recursive definition which is essentially the same.
Example 2
This is the sequence of cosine mentioned earlier:
Example 3
Notice that this time, instead of saying , we defined in terms of . This definition is still valid.
Resources
Videos
Introduction to Sequences by James Sousa
What is a Sequence? Basic Sequence Info by patrickJMT
Calculating the first terms of the sequence by Krista King
Ex: Find the General Formula For a Sequence in Fraction Form (Arithmetic/Geometric) by James Sousa
Geometric Sequences: A Formula for the' n - th ' Term , Part 1 by patrickJMT
Finding the nth Term of the Sequence by Krista King
Limits of a Sequence by James Sousa
Sequences - Examples showing convergence or divergence by patrickJMT
Finding the Limit of a Sequence, 3 more examples by patrickJMT
Does the sequence converge or diverge? by Krista King
Intro to Monotonic and Bounded Sequences, Ex 1 by patrickJMT
Increasing, decreasing and not monotonic sequences by Krista King
Monotonic Sequences and Bounded Sequences by The Organic Chemistry Tutor
Ex: Finding Terms in a Sequence Given a Recursive Formula by James Sousa
Recursive Sequences by patrickJMT
Recursive Formulas For Sequences by The Organic Chemistry Tutor
Licensing
Content obtained and/or adapted from:
- Definition of a sequence, Wikibooks: Calculus under a CC BY-SA license