Difference between revisions of "Arc Length"
Jump to navigation
Jump to search
(2 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
For those who prefer simplicity, the formula can be rewritten into:<blockquote><math>L=\int_a^b|\mathbf{r}'(t)|dt\quad </math> or <math>\quad\frac{dL}{dt}=|\mathbf{r}'(t)|</math></blockquote> | For those who prefer simplicity, the formula can be rewritten into:<blockquote><math>L=\int_a^b|\mathbf{r}'(t)|dt\quad </math> or <math>\quad\frac{dL}{dt}=|\mathbf{r}'(t)|</math></blockquote> | ||
− | ===Example | + | ===Example Problems=== |
− | Find the circumference of the circle given by the parametric equations <math>x(t)=R\cos(t),y(t)=R\sin(t)</math> , with <math>t\in[0,2\pi]</math>. | + | 1. Find the circumference of the circle given by the parametric equations <math>x(t)=R\cos(t),y(t)=R\sin(t)</math> , with <math>t\in[0,2\pi]</math>. |
:<math>\begin{align}s&=\int\limits_0^{2\pi}\sqrt{\left(\tfrac{d}{dt}\big(R\cos(t)\big)\right)^2+\left(\tfrac{d}{dt}\big(R\sin(t)\big)\right)^2}dt\\ | :<math>\begin{align}s&=\int\limits_0^{2\pi}\sqrt{\left(\tfrac{d}{dt}\big(R\cos(t)\big)\right)^2+\left(\tfrac{d}{dt}\big(R\sin(t)\big)\right)^2}dt\\ | ||
Line 15: | Line 15: | ||
&=R\cdot t\Big|_0^{2\pi}\\ | &=R\cdot t\Big|_0^{2\pi}\\ | ||
&=\mathbf{2\pi R}\end{align}</math> | &=\mathbf{2\pi R}\end{align}</math> | ||
+ | |||
+ | 2. Find the length of the curve <math>y=\frac{e^x+e^{-x}}{2}</math> from <math>x=0</math> to <math>x=1</math>. | ||
+ | |||
+ | :<math>\begin{align}s&=\int\limits_0^1\sqrt{1+\left(\frac{d}{dx}\left(\frac{e^{x}+e^{-x}}{2}\right)\right)^2}dx\\ | ||
+ | &=\int\limits_0^1\sqrt{1+\left(\frac{e^{x}-e^{-x}}{2}\right)^2}dx\\ | ||
+ | &=\int\limits_0^1\sqrt{1+\frac{e^{2x}-2+e^{-2x}}{4}}dx\\ | ||
+ | &=\int\limits_0^1\sqrt{\frac{e^{2x}+2+e^{-2x}}{4}}dx\\ | ||
+ | &=\int\limits_0^1\sqrt{\left(\frac{e^{x}+e^{-x}}{2}\right)^2}dx\\ | ||
+ | &=\int\limits_0^1\frac{e^{x}+e^{-x}}{2}dx\\ | ||
+ | &=\frac{e^{x}-e^{-x}}{2}\bigg|_0^1\\ | ||
+ | &=\mathbf{\frac{e-\frac1e}{2}}\end{align}</math> | ||
==Resources== | ==Resources== | ||
+ | * [https://en.wikibooks.org/wiki/Calculus/Arc_length Arc Length], WikiBooks: Calculus | ||
* [https://openstax.org/books/calculus-volume-3/pages/3-3-arc-length-and-curvature Arc Length and Curvature], OpenStax | * [https://openstax.org/books/calculus-volume-3/pages/3-3-arc-length-and-curvature Arc Length and Curvature], OpenStax | ||
+ | |||
+ | ==Licensing== | ||
+ | Content obtained and/or adapted from: | ||
+ | * [https://en.wikibooks.org/wiki/Calculus/Arc_length Arc Length, WikiBooks: Calculus] under a CC BY-SA license |
Latest revision as of 10:15, 2 November 2021
We can deduce that the length of a curve with parametric equations , should be:
Since vector functions are fundamentally parametric equations with directions, we can utilize the formula above into the length of a space curve.
Arc length of a space curve
If the curve has the vector equation , or, equivalently, the parametric equations , where are continuous, then the length of the curve from to is:
- }}
For those who prefer simplicity, the formula can be rewritten into:
or
Example Problems
1. Find the circumference of the circle given by the parametric equations , with .
2. Find the length of the curve from to .
Resources
- Arc Length, WikiBooks: Calculus
- Arc Length and Curvature, OpenStax
Licensing
Content obtained and/or adapted from:
- Arc Length, WikiBooks: Calculus under a CC BY-SA license