Difference between revisions of "Lagrange Multipliers"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
+
The method of Lagrange multipliers solves the constrained optimization problem by transforming it into a non-constrained optimization problem of the form:
[https://www.youtube.com/watch?v=ry9cgNx1QV8&list=RDCMUCFe6jenM1Bc54qtBsIJGRZQ&index=5 LaGrange Multipliers - Finding Maximum or Minimum Values ]
+
* <math>\operatorname{\mathcal{L}}(x_1,x_2,\ldots, x_n,\lambda)= \operatorname{f}(x_1,x_2,\ldots, x_n)+\operatorname{\lambda}(k-g(x_1,x_2,\ldots, x_n))</math>
 +
Then finding the gradient and Hessian as was done above will determine any optimum values of <math>\operatorname{\mathcal{L}}(x_1,x_2,\ldots, x_n,\lambda)</math>.
 +
 
 +
Suppose we now want to find optimum values for <math>f(x,y)=2x^2+y^2</math> subject to <math>x+y=1</math> from [2].
 +
 
 +
Then the Lagrangian method will result in a non-constrained function.
 +
* <math>\operatorname{\mathcal{L}}(x,y,\lambda)= 2x^2+y^2+\lambda (1-x-y)</math>
 +
 
 +
The gradient for this new function is
 +
* <math>\frac{\partial \mathcal{L}}{\partial x}(x,y,\lambda)= 4x+\lambda (-1)=0</math>
 +
* <math>\frac{\partial \mathcal{L}}{\partial y}(x,y,\lambda)= 2y+\lambda (-1)=0</math>
 +
* <math>\frac{\partial \mathcal{L}}{\partial \lambda}(x,y,\lambda)=1-x-y=0</math>
 +
 
 +
Finding the stationary points of the above equations can be obtained from their matrix from.
 +
 
 +
: <math> \begin{bmatrix}
 +
4 & 0 & -1 \\
 +
0& 2 & -1 \\
 +
-1 & -1 & 0
 +
\end{bmatrix} \begin{bmatrix}
 +
x\\
 +
y \\
 +
\lambda \end{bmatrix}= \begin{bmatrix}
 +
0\\
 +
0\\
 +
-1
 +
\end{bmatrix}
 +
</math>
 +
 
 +
This results in <math>x=1/3, y=2/3, \lambda=4/3</math>.
 +
 
 +
Next we can use the Hessian as before to determine the type of this stationary point.
 +
 
 +
: <math> H(\mathcal{L})=
 +
\begin{bmatrix}
 +
4 & 0 & -1 \\
 +
0& 2 & -1 \\
 +
-1&-1&0
 +
\end{bmatrix}
 +
</math>
 +
 
 +
Since <math> H(\mathcal{L}) >0 </math> then the solution <math>(1/3,2/3,4/3)</math> minimizes <math>f(x,y)=2x^2+y^2</math> subject to <math>x+y=1</math> with <math>f(x,y)=2/3</math>.
 +
 
 +
 
 +
==Resources==
 +
* [https://en.wikibooks.org/wiki/Calculus_Optimization_Methods/Lagrange_Multipliers Lagrange Multipliers], WikiBooks: Calculus Optimization Methods
 +
 
 +
===Videos===
 +
*[https://www.youtube.com/watch?v=ry9cgNx1QV8&list=RDCMUCFe6jenM1Bc54qtBsIJGRZQ&index=5 LaGrange Multipliers - Finding Maximum or Minimum Values ]Video by patrickJMT
 +
 
 +
*[https://www.youtube.com/watch?v=x6j6yFzTUgU Lagrange Multipliers Practice Problems] Video by ames Hamblin 2017 
 +
 
 +
*[https://www.youtube.com/watch?v=HyqBcD_e_Uw Lagrange multipliers | MIT 18.02SC Multivariable Calculus, Fall 2010] Video by MIT OpenCourseWare
 +
 
 +
*[https://www.youtube.com/watch?v=qXhcpqslNUU Lagrange Multipliers - Two Constraints -patrickJMT 2009 ] Video by patrickJMT 2009
 +
 
 +
*[https://www.youtube.com/watch?v=nDuS5uQ7-lo Lagrange multipliers (3 variables) | MIT 18.02SC Multivariable Calculus, Fall 2010] Video by MIT OpenCourseWare
 +
 
 +
==Licensing==
 +
Content obtained and/or adapted from:
 +
* [https://en.wikibooks.org/wiki/Calculus_Optimization_Methods/Lagrange_Multipliers Lagrange Multipliers, WikiBooks: Calculus Optimization Methods] under a CC BY-SA license

Latest revision as of 15:52, 2 November 2021

The method of Lagrange multipliers solves the constrained optimization problem by transforming it into a non-constrained optimization problem of the form:

Then finding the gradient and Hessian as was done above will determine any optimum values of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{\mathcal{L}}(x_1,x_2,\ldots, x_n,\lambda)} .

Suppose we now want to find optimum values for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y)=2x^2+y^2} subject to from [2].

Then the Lagrangian method will result in a non-constrained function.

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{\mathcal{L}}(x,y,\lambda)= 2x^2+y^2+\lambda (1-x-y)}

The gradient for this new function is

  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial \mathcal{L}}{\partial x}(x,y,\lambda)= 4x+\lambda (-1)=0}
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial \mathcal{L}}{\partial y}(x,y,\lambda)= 2y+\lambda (-1)=0}

Finding the stationary points of the above equations can be obtained from their matrix from.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} 4 & 0 & -1 \\ 0& 2 & -1 \\ -1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x\\ y \\ \lambda \end{bmatrix}= \begin{bmatrix} 0\\ 0\\ -1 \end{bmatrix} }

This results in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1/3, y=2/3, \lambda=4/3} .

Next we can use the Hessian as before to determine the type of this stationary point.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H(\mathcal{L})= \begin{bmatrix} 4 & 0 & -1 \\ 0& 2 & -1 \\ -1&-1&0 \end{bmatrix} }

Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H(\mathcal{L}) >0 } then the solution minimizes subject to with .


Resources

Videos

Licensing

Content obtained and/or adapted from: