Difference between revisions of "Neighborhoods in 𝐑"
| (5 intermediate revisions by one other user not shown) | |||
| Line 2: | Line 2: | ||
<p>One way to represent the real numbers <math>\mathbb{R}</math> is on the real number line as depicted below.</p> | <p>One way to represent the real numbers <math>\mathbb{R}</math> is on the real number line as depicted below.</p> | ||
| − | [[File:Real number line for Algebra book.svg|Real number line]] | + | |
| + | |||
| + | [[File:Real number line for Algebra book.svg|frame|center|Real number line]] | ||
| + | |||
| + | |||
<p>We will now state the important geometric representation of the absolute value with respect to the real number line.</p> | <p>We will now state the important geometric representation of the absolute value with respect to the real number line.</p> | ||
| Line 15: | Line 19: | ||
<tr> | <tr> | ||
<td><strong>Definition:</strong> Let <math>a</math> be a real number and let <math>\varepsilon > 0</math>. The <math>\varepsilon</math>-neighbourhood of the number <math>a</math> is the set denoted <math>V_{\varepsilon} (a) := \{ x \in \mathbb{R} : \mid x - a \mid < \varepsilon \}</math>. Alternatively we can define <math>V_{\varepsilon}(a) := \{x \in \mathbb{R} : a - \varepsilon < x < a + \varepsilon \}</math>. | <td><strong>Definition:</strong> Let <math>a</math> be a real number and let <math>\varepsilon > 0</math>. The <math>\varepsilon</math>-neighbourhood of the number <math>a</math> is the set denoted <math>V_{\varepsilon} (a) := \{ x \in \mathbb{R} : \mid x - a \mid < \varepsilon \}</math>. Alternatively we can define <math>V_{\varepsilon}(a) := \{x \in \mathbb{R} : a - \varepsilon < x < a + \varepsilon \}</math>. | ||
| − | < | + | |
| + | |||
| + | |||
| + | [[File:Epsilon Umgebung.svg|frame|center|<math>\varepsilon</math>-neighbourhood around <math>a</math> (<math>V_{\varepsilon}(a)</math>) expressed on the real number line]] | ||
| + | |||
| + | |||
| + | |||
</td> | </td> | ||
</tr> | </tr> | ||
| Line 29: | Line 39: | ||
<li><strong>Proof of Theorem 1:</strong> Suppose that for some <math>x</math>, <math>\forall \varepsilon > 0</math>, <math>\mid x - a \mid < \varepsilon</math>. We know that then <math>\mid x - a \mid = 0</math> if and only if <math>x - a = 0</math> and therefore <math>x = a</math>. <math>\blacksquare</math></li> | <li><strong>Proof of Theorem 1:</strong> Suppose that for some <math>x</math>, <math>\forall \varepsilon > 0</math>, <math>\mid x - a \mid < \varepsilon</math>. We know that then <math>\mid x - a \mid = 0</math> if and only if <math>x - a = 0</math> and therefore <math>x = a</math>. <math>\blacksquare</math></li> | ||
</ul> | </ul> | ||
| + | |||
| + | == Licensing == | ||
| + | Content obtained and/or adapted from: | ||
| + | * [http://mathonline.wikidot.com/the-real-line-and-the-epsilon-neighbourhood-of-a-real-number The Real Line and The Epsilon Neighbourhood of a Real Number, mathonline.wikidot.com] under a CC BY-SA license | ||
Latest revision as of 15:02, 6 November 2021
The Real Number Line
One way to represent the real numbers is on the real number line as depicted below.
We will now state the important geometric representation of the absolute value with respect to the real number line.
| Definition: If and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} are real numbers, then we say that the distance from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} to the origin Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} is the absolute value of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mid a \mid} . We say that the distance between Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} is the absolute value of their difference, namely Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mid a - b \mid} . |
For example consider the numbers Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2} . There is a distance of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4} in between these numbers because Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mid -2 - 2 \mid = \mid -4 \mid = 4} .
Epsilon Neighbourhood of a Real Number
For example, consider the point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} , and let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varepsilon_0 = 2} . Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{\varepsilon_0} (1) = \{ x \in \mathbb{R} : \mid x - 1 \mid < 2 \} = (-1, 3)} .
We will now look at a simple theorem regarding the epsilon-neighbourhood of a real number.
| Theorem 1: Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} be a real number. If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall \varepsilon > 0} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in V_{\varepsilon} (a)} then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = a} . |
- Proof of Theorem 1: Suppose that for some Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall \varepsilon > 0} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mid x - a \mid < \varepsilon} . We know that then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mid x - a \mid = 0} if and only if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x - a = 0} and therefore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = a} . Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \blacksquare}
Licensing
Content obtained and/or adapted from:
- The Real Line and The Epsilon Neighbourhood of a Real Number, mathonline.wikidot.com under a CC BY-SA license