Difference between revisions of "Baire's Theorem and Applications"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 27: Line 27:
  
  
===The Baire Category Theorem===
+
==Sets of the First and Second Categories in a Topological Space==
 +
<p>Recall that if <span class="math-inline"><math>(X, \tau)</math></span> is a topological space then a set <span class="math-inline"><math>A \subseteq X</math></span> is said to be dense in <span class="math-inline"><math>X</math></span> if the intersection of <span class="math-inline"><math>A</math></span> with all open sets (except for the empty set) is nonempty, that is, for all <span class="math-inline"><math>U \in \tau \setminus \{ \emptyset \}</math></span> we have that:</p>
 +
<div style="text-align: center;"><math>\begin{align} \quad A \cap U \neq \emptyset \end{align}</math></div>
 +
<p>Furthermore, <span class="math-inline"><math>A</math></span> is said to be nowhere dense if the interior of the closure of <span class="math-inline"><math>A</math></span> is empty, that is:</p>
 +
<div style="text-align: center;"><math>\begin{align} \quad \mathrm{int} (\bar{A}) = \emptyset \end{align}</math></div>
 +
<p>We will now look at two very important definitions regarding whether an arbitrary set <span class="math-inline"><math>A \subseteq X</math></span> can either be written as the union of a countable collection of nowhere dense subsets of <span class="math-inline"><math>X</math></span> or not.</p>
 +
<blockquote style="background: white; border: 1px solid black; padding: 1em;">
 +
<td><strong>Definition:</strong> Let <span class="math-inline"><math>(X, \tau)</math></span> be a topological space. A set <span class="math-inline"><math>A \subseteq X</math></span> is said to be of <strong>The First Category</strong> or <strong>Meager</strong> if <span class="math-inline"><math>A</math></span> can be expressed as the union of a countable number of nowhere dense subsets of <span class="math-inline"><math>X</math></span>. If <span class="math-inline"><math>A</math></span> cannot be expressed as such a union, then <span class="math-inline"><math>A</math></span> is said to be of <strong>The Second Category</strong> or <strong>Nonmeager</strong>.</td>
 +
</blockquote>
 +
<p>Note that in general it is much easier to show that a set <span class="math-inline"><math>A \subseteq X</math></span> of a topological space <span class="math-inline"><math>(X, \tau)</math></span> is of the first category since we only need to find a countable collection of nowhere dense subsets, say <span class="math-inline"><math>\{ A_1, A_2, ... \}</math></span> (possibly finite) where each <span class="math-inline"><math>A_i</math></span> is nowhere dense such that:</p>
 +
<div style="text-align: center;"><math>\begin{align} \quad A = \bigcup_{i=1}^{\infty} A_i \end{align}</math></div>
 +
<p>Showing that <span class="math-inline"><math>A \subseteq X</math></span> is of the second category is much more difficult since we must show that no such union of a countable collection of nowhere dense subsets from <span class="math-inline"><math>X</math></span> equals <span class="math-inline"><math>A</math></span>.</p>
 +
<p>For an example of a set of the first category, consider the topological space <span class="math-inline"><math>(\mathbb{R}, \tau)</math></span> where <span class="math-inline"><math>\tau</math></span> is the usual topology of open intervals and consider the set <span class="math-inline"><math>\mathbb{Q} \subseteq \mathbb{R}</math></span> of rational numbers. We already know that the set of rational numbers is countable, so the following union is a union of a countable collection of subsets of <span class="math-inline"><math>X</math></span>:</p>
 +
<div style="text-align: center;"><math>\begin{align} \quad \mathbb{Q} = \bigcup_{q \in \mathbb{Q}} \{ q \} \end{align}</math></div>
 +
<p>Each of the sets <span class="math-inline"><math>\{ q \}</math></span> is nowhere dense. Therefore <span class="math-inline"><math>\mathbb{Q}</math></span> can be expressed as the union of a countable collection of nowhere dense subsets of <span class="math-inline"><math>X</math></span>, so <span class="math-inline"><math>\mathbb{Q}</math></span> is of the first category.</p>
 +
 
 +
==The Baire Category Theorem==
 
<blockquote style="background: white; border: 1px solid black; padding: 1em;">
 
<blockquote style="background: white; border: 1px solid black; padding: 1em;">
 
<td><strong>Lemma 1:</strong> Let <span class="math-inline"><math>(X, \tau)</math></span> be a topological space and let <span class="math-inline"><math>A \subseteq X</math></span>. If <span class="math-inline"><math>A</math></span> is a nowhere dense set then for every <span class="math-inline"><math>U \in \tau</math></span> there exists a <span class="math-inline"><math>B \subseteq U</math></span> such that <span class="math-inline"><math>A \cap \bar{B} = \emptyset</math></span>.</td>
 
<td><strong>Lemma 1:</strong> Let <span class="math-inline"><math>(X, \tau)</math></span> be a topological space and let <span class="math-inline"><math>A \subseteq X</math></span>. If <span class="math-inline"><math>A</math></span> is a nowhere dense set then for every <span class="math-inline"><math>U \in \tau</math></span> there exists a <span class="math-inline"><math>B \subseteq U</math></span> such that <span class="math-inline"><math>A \cap \bar{B} = \emptyset</math></span>.</td>
Line 56: Line 72:
 
==Licensing==
 
==Licensing==
 
Content obtained and/or adapted from:
 
Content obtained and/or adapted from:
 +
* [http://mathonline.wikidot.com/dense-and-nowhere-dense-sets-in-a-topological-space Dense and Nowhere Dense Sets in a Topological Space, mathonline.wikidot.com] under a CC BY-SA license
 +
* [http://mathonline.wikidot.com/sets-of-the-first-and-second-categories-in-a-topological-spa Sets of the First and Second Categories in a Topological Space, mathonline.wikidot.com] under a CC BY-SA license
 
* [http://mathonline.wikidot.com/the-baire-category-theorem The Baire Category Theorem, mathonline.wikidot.com] under a CC BY-SA license
 
* [http://mathonline.wikidot.com/the-baire-category-theorem The Baire Category Theorem, mathonline.wikidot.com] under a CC BY-SA license

Latest revision as of 15:17, 8 November 2021

Dense and Nowhere Dense Sets

Dense Sets in a Topological Space

Definition: Let be a topological space. The set is said to be Dense in if the intersection of every nonempty open set with is nonempty, that is, for all .

Given any topological space it is important to note that is dense in because every is such that , and so for all .

For another example, consider the topological space where is the usual topology of open intervals. Then the set of rational numbers is dense in . If not, then there exists an such that .

Since we have that for some open interval with and . Suppose that . Then we must also have that:

The intersection above implies that there exists no rational numbers in the interval , i.e., there exists no such that . But this is a contradiction since for all with there ALWAYS exists a rational number such that , i.e., . So for all . Thus, is dense in .

We will now look at a very important theorem which will give us a way to determine whether a set is dense in or not.

Theorem 1: Let be a topological space and let . Then is dense in if and only if .

  • Proof: Suppose that is dense in . Then for all we have that . Clearly so we only need to show that .

Nowhere Dense Sets in a Topological Space

Definition: Let be a topological space. A set is said to be Nowhere Dense in if the interior of the closure of is empty, that is, .

For example, consider the topological space where is the usually topology of open intervals on , and consider the set of integers . The closure of , is the smallest closed set containing . The smallest closed set containing is since is open as is an arbitrary union of open sets:

So what is the interior of ? It is the largest open set contained in . All open sets of with respect to this topology are either the empty set, an open interval, a union of open intervals, or the whole set (the union of all open intervals). But no open intervals are contained in and so:

Therefore is a nowhere dense set in with respect to the usual topology on .


Sets of the First and Second Categories in a Topological Space

Recall that if is a topological space then a set is said to be dense in if the intersection of with all open sets (except for the empty set) is nonempty, that is, for all we have that:

Furthermore, is said to be nowhere dense if the interior of the closure of is empty, that is:

We will now look at two very important definitions regarding whether an arbitrary set can either be written as the union of a countable collection of nowhere dense subsets of or not.

Definition: Let be a topological space. A set is said to be of The First Category or Meager if can be expressed as the union of a countable number of nowhere dense subsets of . If cannot be expressed as such a union, then is said to be of The Second Category or Nonmeager.

Note that in general it is much easier to show that a set of a topological space is of the first category since we only need to find a countable collection of nowhere dense subsets, say (possibly finite) where each is nowhere dense such that:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \quad A = \bigcup_{i=1}^{\infty} A_i \end{align}}

Showing that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \subseteq X} is of the second category is much more difficult since we must show that no such union of a countable collection of nowhere dense subsets from equals Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} .

For an example of a set of the first category, consider the topological space Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\mathbb{R}, \tau)} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau} is the usual topology of open intervals and consider the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Q} \subseteq \mathbb{R}} of rational numbers. We already know that the set of rational numbers is countable, so the following union is a union of a countable collection of subsets of :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \quad \mathbb{Q} = \bigcup_{q \in \mathbb{Q}} \{ q \} \end{align}}

Each of the sets Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{ q \}} is nowhere dense. Therefore can be expressed as the union of a countable collection of nowhere dense subsets of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} , so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Q}} is of the first category.

The Baire Category Theorem

Lemma 1: Let be a topological space and let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \subseteq X} . If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is a nowhere dense set then for every there exists a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B \subseteq U} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \cap \bar{B} = \emptyset} .

Theorem 1 (The Baire Category Theorem): Every complete metric space is of the second category.

  • Proof: Let be a complete metric space. Then every Cauchy sequence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_n)_{n=1}^{\infty}} of elements from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} converges in . Suppose that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} is of the first category. Then there exists a countable collection of nowhere dense sets Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_1, A_2, ... \subset X} such that:
  • Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U \subset X} . For each nowhere dense set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_i} , there exists a set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_i \subset U} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_i \cap \bar{B_i} = \emptyset} .
  • Let be a ball contained in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_1 \cap \bar{B_1} = \emptyset} . Let be a ball contained in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_1} whose radius is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{r}{2}} and such that . Repeat this process. For each Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in \{ 2, 3, ... \}} let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_n \left (x_n, \frac{r}{n} \right )} be a ball contained in whose radius is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{r}{n}} and such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_n \cap \bar{B_n} = \emptyset} and such that .
  • The sequence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_n)_{n=1}^{\infty}} is Cauchy since as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in \mathbb{N}} gets large, the elements are very close. Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} is a complete metric space, we must have that this Cauchy sequence therefore converges to some Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p \in X} , i.e., .
  • Now notice that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in \bar{B_n}} for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in \mathbb{N}} because if not, then there exists an Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m \in \mathbb{N}} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \not \in \bar{B_n}} for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \geq m} . Hence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\bar{B_n})^c} is open and so there exists an open ball Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} such that but then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x \to \infty} x_n \neq x} because Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_m \not \in B} for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m \geq n} .
  • Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in \bar{B_n}} for all then since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_n \cap \bar{B_n} = \emptyset} we must have that then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \not\in A_n }

Licensing

Content obtained and/or adapted from: