Difference between revisions of "Baire's Theorem and Applications"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
Line 72: Line 72:
 
==Licensing==
 
==Licensing==
 
Content obtained and/or adapted from:
 
Content obtained and/or adapted from:
 +
* [http://mathonline.wikidot.com/dense-and-nowhere-dense-sets-in-a-topological-space Dense and Nowhere Dense Sets in a Topological Space, mathonline.wikidot.com] under a CC BY-SA license
 +
* [http://mathonline.wikidot.com/sets-of-the-first-and-second-categories-in-a-topological-spa Sets of the First and Second Categories in a Topological Space, mathonline.wikidot.com] under a CC BY-SA license
 
* [http://mathonline.wikidot.com/the-baire-category-theorem The Baire Category Theorem, mathonline.wikidot.com] under a CC BY-SA license
 
* [http://mathonline.wikidot.com/the-baire-category-theorem The Baire Category Theorem, mathonline.wikidot.com] under a CC BY-SA license
* [http://mathonline.wikidot.com/dense-and-nowhere-dense-sets-in-a-topological-space Dense and Nowhere Dense Sets in a Topological Space, mathonline.wikidot.com] under a CC BY-SA license
 

Latest revision as of 15:17, 8 November 2021

Dense and Nowhere Dense Sets

Dense Sets in a Topological Space

Definition: Let be a topological space. The set is said to be Dense in if the intersection of every nonempty open set with is nonempty, that is, for all .

Given any topological space it is important to note that is dense in because every is such that , and so for all .

For another example, consider the topological space where is the usual topology of open intervals. Then the set of rational numbers is dense in . If not, then there exists an such that .

Since we have that for some open interval with and . Suppose that . Then we must also have that:

The intersection above implies that there exists no rational numbers in the interval , i.e., there exists no such that . But this is a contradiction since for all with there ALWAYS exists a rational number such that , i.e., . So for all . Thus, is dense in .

We will now look at a very important theorem which will give us a way to determine whether a set is dense in or not.

Theorem 1: Let be a topological space and let . Then is dense in if and only if .

  • Proof: Suppose that is dense in . Then for all we have that . Clearly so we only need to show that .

Nowhere Dense Sets in a Topological Space

Definition: Let be a topological space. A set is said to be Nowhere Dense in if the interior of the closure of is empty, that is, .

For example, consider the topological space where is the usually topology of open intervals on , and consider the set of integers . The closure of , is the smallest closed set containing . The smallest closed set containing is since is open as is an arbitrary union of open sets:

So what is the interior of ? It is the largest open set contained in . All open sets of with respect to this topology are either the empty set, an open interval, a union of open intervals, or the whole set (the union of all open intervals). But no open intervals are contained in and so:

Therefore is a nowhere dense set in with respect to the usual topology on .


Sets of the First and Second Categories in a Topological Space

Recall that if is a topological space then a set is said to be dense in if the intersection of with all open sets (except for the empty set) is nonempty, that is, for all we have that:

Furthermore, is said to be nowhere dense if the interior of the closure of is empty, that is:

We will now look at two very important definitions regarding whether an arbitrary set can either be written as the union of a countable collection of nowhere dense subsets of or not.

Definition: Let be a topological space. A set is said to be of The First Category or Meager if can be expressed as the union of a countable number of nowhere dense subsets of . If cannot be expressed as such a union, then is said to be of The Second Category or Nonmeager.

Note that in general it is much easier to show that a set of a topological space is of the first category since we only need to find a countable collection of nowhere dense subsets, say (possibly finite) where each is nowhere dense such that:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \quad A = \bigcup_{i=1}^{\infty} A_i \end{align}}

Showing that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \subseteq X} is of the second category is much more difficult since we must show that no such union of a countable collection of nowhere dense subsets from equals Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} .

For an example of a set of the first category, consider the topological space Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\mathbb{R}, \tau)} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau} is the usual topology of open intervals and consider the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Q} \subseteq \mathbb{R}} of rational numbers. We already know that the set of rational numbers is countable, so the following union is a union of a countable collection of subsets of :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \quad \mathbb{Q} = \bigcup_{q \in \mathbb{Q}} \{ q \} \end{align}}

Each of the sets Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{ q \}} is nowhere dense. Therefore can be expressed as the union of a countable collection of nowhere dense subsets of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} , so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Q}} is of the first category.

The Baire Category Theorem

Lemma 1: Let be a topological space and let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \subseteq X} . If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is a nowhere dense set then for every there exists a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B \subseteq U} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \cap \bar{B} = \emptyset} .

Theorem 1 (The Baire Category Theorem): Every complete metric space is of the second category.

  • Proof: Let be a complete metric space. Then every Cauchy sequence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_n)_{n=1}^{\infty}} of elements from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} converges in . Suppose that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} is of the first category. Then there exists a countable collection of nowhere dense sets Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_1, A_2, ... \subset X} such that:
  • Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U \subset X} . For each nowhere dense set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_i} , there exists a set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_i \subset U} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_i \cap \bar{B_i} = \emptyset} .
  • Let be a ball contained in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_1 \cap \bar{B_1} = \emptyset} . Let be a ball contained in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_1} whose radius is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{r}{2}} and such that . Repeat this process. For each Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in \{ 2, 3, ... \}} let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_n \left (x_n, \frac{r}{n} \right )} be a ball contained in whose radius is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{r}{n}} and such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_n \cap \bar{B_n} = \emptyset} and such that .
  • The sequence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_n)_{n=1}^{\infty}} is Cauchy since as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in \mathbb{N}} gets large, the elements are very close. Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} is a complete metric space, we must have that this Cauchy sequence therefore converges to some Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p \in X} , i.e., .
  • Now notice that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in \bar{B_n}} for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in \mathbb{N}} because if not, then there exists an Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m \in \mathbb{N}} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \not \in \bar{B_n}} for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \geq m} . Hence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\bar{B_n})^c} is open and so there exists an open ball Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} such that but then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x \to \infty} x_n \neq x} because Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_m \not \in B} for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m \geq n} .
  • Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in \bar{B_n}} for all then since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_n \cap \bar{B_n} = \emptyset} we must have that then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \not\in A_n }

Licensing

Content obtained and/or adapted from: