Difference between revisions of "Divergence Theorem"
Line 41: | Line 41: | ||
Since the union of surfaces {{math|''S''<sub>1</sub>}} and {{math|''S''<sub>2</sub>}} is {{mvar|S}} | Since the union of surfaces {{math|''S''<sub>1</sub>}} and {{math|''S''<sub>2</sub>}} is {{mvar|S}} | ||
:<math>\Phi(V_\text{1}) + \Phi(V_\text{2}) = \Phi(V)</math> | :<math>\Phi(V_\text{1}) + \Phi(V_\text{2}) = \Phi(V)</math> | ||
− | + | ||
− | |||
[[File:Divergence theorem 2 - volume partition.png|thumb|upright=2|The volume can be divided into any number of subvolumes and the flux out of ''V'' is equal to the sum of the flux out of each subvolume, because the flux through the <span style="color:green;">green</span> surfaces cancels out in the sum. In (b) the volumes are shown separated slightly, illustrating that each green partition is part of the boundary of two adjacent volumes]] | [[File:Divergence theorem 2 - volume partition.png|thumb|upright=2|The volume can be divided into any number of subvolumes and the flux out of ''V'' is equal to the sum of the flux out of each subvolume, because the flux through the <span style="color:green;">green</span> surfaces cancels out in the sum. In (b) the volumes are shown separated slightly, illustrating that each green partition is part of the boundary of two adjacent volumes]] | ||
Line 48: | Line 47: | ||
This principle applies to a volume divided into any number of parts, as shown in the diagram. Since the integral over each internal partition ''<span style="color:green;">(green surfaces)</span>'' appears with opposite signs in the flux of the two adjacent volumes they cancel out, and the only contribution to the flux is the integral over the external surfaces ''<span style="color:grey;">(grey)</span>''. Since the external surfaces of all the component volumes equal the original surface. | This principle applies to a volume divided into any number of parts, as shown in the diagram. Since the integral over each internal partition ''<span style="color:green;">(green surfaces)</span>'' appears with opposite signs in the flux of the two adjacent volumes they cancel out, and the only contribution to the flux is the integral over the external surfaces ''<span style="color:grey;">(grey)</span>''. Since the external surfaces of all the component volumes equal the original surface. | ||
:<math>\Phi(V) = \sum_{V_\text{i}\subset V} \Phi(V_\text{i})</math> | :<math>\Phi(V) = \sum_{V_\text{i}\subset V} \Phi(V_\text{i})</math> | ||
− | + | ||
− | |||
[[File:Divergence theorem 3 - infinitesimals.png|thumb|upright=1|As the volume is subdivided into smaller parts, the ratio of the flux <math>\Phi(V_\text{i})</math> out of each volume to the volume <math>|V_\text{i}|</math> approaches <math>\operatorname{div} \mathbf{F}</math>]] | [[File:Divergence theorem 3 - infinitesimals.png|thumb|upright=1|As the volume is subdivided into smaller parts, the ratio of the flux <math>\Phi(V_\text{i})</math> out of each volume to the volume <math>|V_\text{i}|</math> approaches <math>\operatorname{div} \mathbf{F}</math>]] |
Revision as of 15:12, 10 November 2021
The divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, is a theorem which relates the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed.
More precisely, the divergence theorem states that the surface integral of a vector field over a closed surface, which is called the flux through the surface, is equal to the volume integral of the divergence over the region inside the surface. Intuitively, it states that the sum of all sources of the field in a region (with sinks regarded as negative sources) gives the net flux out of the region.
The divergence theorem is an important result for the mathematics of physics and engineering, particularly in electrostatics and fluid dynamics. In these fields, it is usually applied in three dimensions. However, it generalizes to any number of dimensions. In one dimension, it is equivalent to integration by parts. In two dimensions, it is equivalent to Green's theorem.
Contents
Explanation using liquid flow
Vector fields are often illustrated using the example of the velocity field of a fluid, such as a gas or liquid. A moving liquid has a velocity—a speed and a direction—at each point, which can be represented by a vector, so that the velocity of the liquid forms a vector field. Consider an imaginary closed surface S inside a body of liquid, enclosing a volume of liquid. The flux of liquid out of the volume is equal to the volume rate of fluid crossing this surface, i.e., the surface integral of the velocity over the surface.
Since liquids are incompressible, the amount of liquid inside a closed volume is constant; if there are no sources or sinks inside the volume then the flux of liquid out of S is zero. If the liquid is moving, it may flow into the volume at some points on the surface S and out of the volume at other points, but the amounts flowing in and out at any moment are equal, so the net flux of liquid out of the volume is zero.
However if a source of liquid is inside the closed surface, such as a pipe through which liquid is introduced, the additional liquid will exert pressure on the surrounding liquid, causing an outward flow in all directions. This will cause a net outward flow through the surface S. The flux outward through S equals the volume rate of flow of fluid into S from the pipe. Similarly if there is a sink or drain inside S, such as a pipe which drains the liquid off, the external pressure of the liquid will cause a velocity throughout the liquid directed inward toward the location of the drain. The volume rate of flow of liquid inward through the surface S equals the rate of liquid removed by the sink.
If there are multiple sources and sinks of liquid inside S, the flux through the surface can be calculated by adding up the volume rate of liquid added by the sources and subtracting the rate of liquid drained off by the sinks. The volume rate of flow of liquid through a source or sink (with the flow through a sink given a negative sign) is equal to the divergence of the velocity field at the pipe mouth, so adding up (integrating) the divergence of the liquid throughout the volume enclosed by S equals the volume rate of flux through S. This is the divergence theorem.
The divergence theorem is employed in any conservation law which states that the total volume of all sinks and sources, that is the volume integral of the divergence, is equal to the net flow across the volume's boundary.
Mathematical statement
Suppose V is a subset of (in the case of {{{1}}} represents a volume in three-dimensional space) which is compact and has a piecewise smooth boundary S (also indicated with ). If F is a continuously differentiable vector field defined on a neighborhood of V, then:
The left side is a volume integral over the volume V, the right side is the surface integral over the boundary of the volume V. The closed manifold is oriented by outward-pointing normals, and is the outward pointing unit normal at each point on the boundary . ( may be used as a shorthand for .) In terms of the intuitive description above, the left-hand side of the equation represents the total of the sources in the volume V, and the right-hand side represents the total flow across the boundary S.
Informal derivation
The divergence theorem follows from the fact that if a volume V is partitioned into separate parts, the flux out of the original volume is equal to the sum of the flux out of each component volume. This is true despite the fact that the new subvolumes have surfaces that were not part of the original volume's surface, because these surfaces are just partitions between two of the subvolumes and the flux through them just passes from one volume to the other and so cancels out when the flux out of the subvolumes is summed.
See the diagram. A closed, bounded volume V is divided into two volumes V1 and V2 by a surface S3 (green). The flux Φ(Vi) out of each component region Vi is equal to the sum of the flux through its two faces, so the sum of the flux out of the two parts is
where Φ1 and Φ2 are the flux out of surfaces S1 and S2, Φ31 is the flux through S3 out of volume 1, and Φ32 is the flux through S3 out of volume 2. The point is that surface S3 is part of the surface of both volumes. The "outward" direction of the normal vector is opposite for each volume, so the flux out of one through S3 is equal to the negative of the flux out of the other
so these two fluxes cancel in the sum. Therefore
Since the union of surfaces S1 and S2 is S
This principle applies to a volume divided into any number of parts, as shown in the diagram. Since the integral over each internal partition (green surfaces) appears with opposite signs in the flux of the two adjacent volumes they cancel out, and the only contribution to the flux is the integral over the external surfaces (grey). Since the external surfaces of all the component volumes equal the original surface.
The flux Φ out of each volume is the surface integral of the vector field F(x) over the surface
The goal is to divide the original volume into infinitely many infinitesimal volumes. As the volume is divided into smaller and smaller parts, the surface integral on the right, the flux out of each subvolume, approaches zero because the surface area S(Vi) approaches zero. However, from the definition of divergence, the ratio of flux to volume, , the part in parentheses below, does not in general vanish but approaches the divergence div F as the volume approaches zero.
As long as the vector field F(x) has continuous derivatives, the sum above holds even in the limit when the volume is divided into infinitely small increments
As approaches zero volume, it becomes the infinitesimal dV, the part in parentheses becomes the divergence, and the sum becomes a volume integral over V Template:Equation box 1 Since this derivation is coordinate free, it shows that the divergence does not depend on the coordinates used.
Corollaries
By replacing F in the divergence theorem with specific forms, other useful identities can be derived (cf. vector identities).
- With for a scalar function g and a vector field F,
- A special case of this is , in which case the theorem is the basis for Green's identities.
- With for two vector fields F and G, where denotes a cross product,
- With for two vector fields F and G, where denotes a dot product,
- With for a scalar function f and vector field c:
- The last term on the right vanishes for constant or any divergence free (solenoidal) vector field, e.g. Incompressible flows without sources or sinks such as phase change or chemical reactions etc. In particular, taking to be constant:
- With for vector field F and constant vector c:
- By reordering the triple product on the right hand side and taking out the constant vector of the integral,
- Hence,
Example
Suppose we wish to evaluate
where S is the unit sphere defined by
and F is the vector field
The direct computation of this integral is quite difficult, but we can simplify the derivation of the result using the divergence theorem, because the divergence theorem says that the integral is equal to:
where W is the unit ball:
Since the function y is positive in one hemisphere of W and negative in the other, in an equal and opposite way, its total integral over W is zero. The same is true for z:
Therefore,
because the unit ball W has volume Template:Sfrac.
Applications
Differential form and integral form of physical laws
As a result of the divergence theorem, a host of physical laws can be written in both a differential form (where one quantity is the divergence of another) and an integral form (where the flux of one quantity through a closed surface is equal to another quantity). Three examples are Gauss's law (in electrostatics), Gauss's law for magnetism, and Gauss's law for gravity.
Continuity equations
Continuity equations offer more examples of laws with both differential and integral forms, related to each other by the divergence theorem. In fluid dynamics, electromagnetism, quantum mechanics, relativity theory, and a number of other fields, there are continuity equations that describe the conservation of mass, momentum, energy, probability, or other quantities. Generically, these equations state that the divergence of the flow of the conserved quantity is equal to the distribution of sources or sinks of that quantity. The divergence theorem states that any such continuity equation can be written in a differential form (in terms of a divergence) and an integral form (in terms of a flux).
Inverse-square laws
Any inverse-square law can instead be written in a Gauss's law-type form (with a differential and integral form, as described above). Two examples are Gauss's law (in electrostatics), which follows from the inverse-square Coulomb's law, and Gauss's law for gravity, which follows from the inverse-square Newton's law of universal gravitation. The derivation of the Gauss's law-type equation from the inverse-square formulation or vice versa is exactly the same in both cases; see either of those articles for details.
Licensing
Content obtained and/or adapted from:
- Divergence theorem, Wikipedia under a CC BY-SA license