Difference between revisions of "Equation of an Ellipse"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
Line 34: Line 34:
  
 
For <math>u \in [0,\, 1],</math> this formula represents the right upper quarter of the ellipse moving counter-clockwise with increasing <math>u.</math> The left vertex is the limit <math display="inline">\lim_{u \to \pm \infty} (x(u),\, y(u)) = (-a,\, 0)\;.</math>
 
For <math>u \in [0,\, 1],</math> this formula represents the right upper quarter of the ellipse moving counter-clockwise with increasing <math>u.</math> The left vertex is the limit <math display="inline">\lim_{u \to \pm \infty} (x(u),\, y(u)) = (-a,\, 0)\;.</math>
 
  
 
==Resources==
 
==Resources==
 
* [https://courses.lumenlearning.com/waymakercollegealgebra/chapter/equations-of-ellipses/ Equations of Ellipses], Lumen Learning
 
* [https://courses.lumenlearning.com/waymakercollegealgebra/chapter/equations-of-ellipses/ Equations of Ellipses], Lumen Learning
 +
 +
== Licensing ==
 +
Content obtained and/or adapted from:
 +
* [https://en.wikibooks.org/wiki/Conic_Sections/Ellipse Ellipse, Wikibooks: Conic Sections] under a CC BY-SA license
 +
* [https://en.wikipedia.org/wiki/Ellipse Ellipse, Wikipedia] under a CC BY-SA license

Latest revision as of 12:31, 14 November 2021

ElipseAnimada.gif
Ellipse axis.png

Cartesian Equation of an Ellipse

The general equation for an ellipse where its major, or longer, axis is horizontal is : Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1} .
Where the major axis is vertical, it is: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(y-k)^2}{a^2}+\frac{(x-h)^2}{b^2}=1}

  • The center is located at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (h,k)} .
  • The foci are found at a distance of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} from the centre along the major axis, where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c = \sqrt{a^2 - b^2}} .
  • The eccentricity of the ellipse can be found from the formula: where e is eccentricity. A higher eccentricity makes the curve appear more 'squashed', whereas an eccentricity of 0 makes the ellipse a circle.
  • The directrices are the lines
  • The major axis has a length of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2a} and the minor one Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2b} .
  • The sum of the distance from each point to each of the foci is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2a} .

Parametric representation

The construction of points based on the parametric equation and the interpretation of parameter t, which is due to de la Hire

Standard parametric representation

Using trigonometric functions, a parametric representation of the standard ellipse Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tfrac{x^2}{a^2}+\tfrac{y^2}{b^2} = 1} is:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x,\, y) = (a \cos t,\, b \sin t),\ 0 \le t < 2\pi\ .}

The parameter t (called the eccentric anomaly in astronomy) is not the angle of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x(t),y(t))} with the x-axis, but has a geometric meaning due to Philippe de La Hire.

Rational representation

With the substitution Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle u = \tan\left(\frac{t}{2}\right)} and trigonometric formulae one obtains

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos t = \frac{1 - u^2}{u^2 + 1}\ ,\quad \sin t = \frac{2u}{u^2 + 1}}

and the rational parametric equation of an ellipse

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} x(u) &= a\frac{1 - u^2}{u^2 + 1} \\ y(u) &= \frac{2bu}{u^2 + 1} \end{align}\;,\quad -\infty < u < \infty\;,}

which covers any point of the ellipse Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tfrac{x^2}{a^2} + \tfrac{y^2}{b^2} = 1} except the left vertex Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-a,\, 0)} .

For Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u \in [0,\, 1],} this formula represents the right upper quarter of the ellipse moving counter-clockwise with increasing Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u.} The left vertex is the limit Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\textstyle \lim_{u \to \pm \infty} (x(u),\, y(u)) = (-a,\, 0)\;.}

Resources

Licensing

Content obtained and/or adapted from: