Difference between revisions of "Functions:Range"
(Created page with "In mathematics, the '''range of a function''' may refer to either of two closely related concepts: * The codomain of the function * The image of the function Given two sets...") |
|||
Line 4: | Line 4: | ||
* The image of the function | * The image of the function | ||
− | Given two sets {{mvar|X}} and {{mvar|Y}}, a | + | Given two sets {{mvar|X}} and {{mvar|Y}}, a binary relation {{mvar|f}} between {{mvar|X}} and {{mvar|Y}} is a (total) function (from {{mvar|X}} to {{mvar|Y}}) if for every {{mvar|x}} in {{mvar|X}} there is exactly one {{mvar|y}} in {{mvar|Y}} such that {{mvar|f}} relates {{mvar|x}} to {{mvar|y}}. The sets {{mvar|X}} and {{mvar|Y}} are called domain and codomain of {{mvar|f}}, respectively. The image of {{mvar|f}} is then the subset of {{mvar|Y}} consisting of only those elements {{mvar|y}} of {{mvar|Y}} such that there is at least one {{mvar|x}} in {{mvar|X}} with {{math|1=''f''(''x'') = ''y''}}. |
==Terminology== | ==Terminology== | ||
− | As the term "range" can have different meanings, it is considered a good practice to define it the first time it is used in a textbook or article. Older books, when they use the word "range", tend to use it to mean what is now called the codomain. More modern books, if they use the word "range" at all, generally use it to mean what is now called the image. To avoid any confusion, a number of modern books don't use the word "range" at all. | + | As the term "range" can have different meanings, it is considered a good practice to define it the first time it is used in a textbook or article. Older books, when they use the word "range", tend to use it to mean what is now called the codomain. More modern books, if they use the word "range" at all, generally use it to mean what is now called the image. To avoid any confusion, a number of modern books don't use the word "range" at all. |
==Elaboration and example== | ==Elaboration and example== |
Revision as of 15:12, 12 January 2022
In mathematics, the range of a function may refer to either of two closely related concepts:
- The codomain of the function
- The image of the function
Given two sets X and Y, a binary relation f between X and Y is a (total) function (from X to Y) if for every x in X there is exactly one y in Y such that f relates x to y. The sets X and Y are called domain and codomain of f, respectively. The image of f is then the subset of Y consisting of only those elements y of Y such that there is at least one x in X with f(x) = y.
Terminology
As the term "range" can have different meanings, it is considered a good practice to define it the first time it is used in a textbook or article. Older books, when they use the word "range", tend to use it to mean what is now called the codomain. More modern books, if they use the word "range" at all, generally use it to mean what is now called the image. To avoid any confusion, a number of modern books don't use the word "range" at all.
Elaboration and example
Given a function
with domain , the range of , sometimes denoted or , may refer to the codomain or target set (i.e., the set into which all of the output of is constrained to fall), or to , the image of the domain of under (i.e., the subset of consisting of all actual outputs of ). The image of a function is always a subset of the codomain of the function.
As an example of the two different usages, consider the function as it is used in real analysis (that is, as a function that inputs a real number and outputs its square). In this case, its codomain is the set of real numbers , but its image is the set of non-negative real numbers , since is never negative if is real. For this function, if we use "range" to mean codomain, it refers to ; if we use "range" to mean image, it refers to .
In many cases, the image and the codomain can coincide. For example, consider the function , which inputs a real number and outputs its double. For this function, the codomain and the image are the same (both being the set of real numbers), so the word range is unambiguous.