Difference between revisions of "Inverse Trigonometric Functions"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Created page with "In mathematics, the '''inverse trigonometric functions''' (occasionally also called '''arcus functions''', '''antitrigonometric functions''' or '''cyclometric functions''' are...")
 
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
In mathematics, the '''inverse trigonometric functions''' (occasionally also called '''arcus functions''', '''antitrigonometric functions''' or '''cyclometric functions''' are the [[inverse function]]s of the trigonometric functions (with suitably restricted domains). Specifically, they are the inverses of the sine, cosine, tangent (trigonometry)|tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
+
In mathematics, the '''inverse trigonometric functions''' (occasionally also called '''arcus functions''', '''antitrigonometric functions''' or '''cyclometric functions''' are the inverse functions of the trigonometric functions (with suitably restricted domains). Specifically, they are the inverses of the sine, cosine, tangent (trigonometry)|tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
  
 
==Notation==
 
==Notation==
Line 40: Line 40:
 
|-
 
|-
 
|}
 
|}
(Note: Some authors define the range of arcsecant to be (<math>0 \leq y < \frac{\pi}{2} \text{ or } \pi < y \leq \frac{3 \pi}{2}</math>), because the tangent function is nonnegative on this domain. This makes some computations more consistent. For example, using this range, <math>\tan(\arcsec(x)) = \sqrt{x^2 - 1},</math> whereas with the range (<math>0 \leq y < \frac{\pi}{2} \text{ or } \frac{\pi}{2} < y \leq \pi</math>), we would have to write <math>\tan(\arcsec(x)) = \pm \sqrt{x^2 - 1},</math> since tangent is nonnegative on <math>0 \leq y < \frac{\pi}{2},</math> but nonpositive on <math>\frac{\pi}{2} < y \leq \pi.</math> For a similar reason, the same authors define the range of arccosecant to be <math>- \pi < y \leq - \frac{\pi}{2}</math> or <math>0 < y \leq \frac{\pi}{2}.</math>)
+
 
 +
Note: Some authors define the range of arcsecant to be <math> \big( 0 \leq y < \tfrac{\pi}{2} \text{ or } \pi < y \leq \tfrac{3 \pi}{2} \big)</math>, because the tangent function is nonnegative on this domain. This makes some computations more consistent. For example, using this range, <math>\tan(\arcsec(x)) = \sqrt{x^2 - 1},</math> whereas with the range <math> \big( 0 \leq y < \tfrac{\pi}{2} \text{ or } \tfrac{\pi}{2} < y \leq \pi \big) </math>, we would have to write <math>\tan(\arcsec(x)) = \pm \sqrt{x^2 - 1},</math> since tangent is nonnegative on <math>0 \leq y < \tfrac{\pi}{2},</math> but nonpositive on <math>\tfrac{\pi}{2} < y \leq \pi.</math> For a similar reason, the same authors define the range of arccosecant to be <math> \big(- \pi < y \leq - \tfrac{\pi}{2} \text{ or } 0 < y \leq \tfrac{\pi}{2} \big).</math>
  
 
If <math>x</math> is allowed to be a complex number, then the range of <math>y</math> applies only to its real part.
 
If <math>x</math> is allowed to be a complex number, then the range of <math>y</math> applies only to its real part.
Line 157: Line 158:
 
|}
 
|}
  
So for example, by using the equality <math>\sin \left(\frac{\pi}{2} - \theta\right) = \cos \theta</math> (found in the table above at row <math>\;\operatorname{func} = \sin\;</math> and column <math>\;\operatorname{func}\left(\frac{\pi}{2} - \theta\right)</math>), the equation <math>\cos \theta = x</math> can be transformed into <math>\sin \left(\frac{\pi}{2} - \theta\right) = x,</math> which allows for the solution to the equation <math>\;\sin \varphi = x\;</math> (where <math>\varphi := \frac{\pi}{2} - \theta</math>) to be used; that solution being:  
+
So for example, by using the equality <math>\sin \left(\frac{\pi}{2} - \theta\right) = \cos \theta</math>, the equation <math>\cos \theta = x</math> can be transformed into <math>\sin \left(\frac{\pi}{2} - \theta\right) = x,</math> which allows for the solution to the equation <math>\;\sin \varphi = x\;</math> (where <math>\varphi := \frac{\pi}{2} - \theta</math>) to be used; that solution being:  
 
<math>\varphi  = (-1)^k \arcsin (x) + \pi k \; \text{ for some } k \in \Z,</math>
 
<math>\varphi  = (-1)^k \arcsin (x) + \pi k \; \text{ for some } k \in \Z,</math>
 
which becomes:
 
which becomes:
Line 163: Line 164:
 
where using the fact that <math>(-1)^{k} = (-1)^{-k}</math> and substituting <math>h := - k</math> proves that another solution to <math>\;\cos \theta = x\;</math> is:
 
where using the fact that <math>(-1)^{k} = (-1)^{-k}</math> and substituting <math>h := - k</math> proves that another solution to <math>\;\cos \theta = x\;</math> is:
 
<math display="block">\theta ~=~ (-1)^{h+1} \arcsin (x) + \pi h + \frac{\pi}{2} \quad \text{ for some } h \in \Z.</math>
 
<math display="block">\theta ~=~ (-1)^{h+1} \arcsin (x) + \pi h + \frac{\pi}{2} \quad \text{ for some } h \in \Z.</math>
The substitution <math>\;\arcsin x = \frac{\pi}{2} - \arccos x\;</math> may be used express the right hand side of the above formula in terms of <math>\;\arccos x\;</math> instead of <math>\;\arcsin x.\;</math
+
The substitution <math>\;\arcsin x = \frac{\pi}{2} - \arccos x\;</math> may be used express the right hand side of the above formula in terms of <math>\;\arccos x\;</math> instead of <math>\;\arcsin x.\;</math>
<!--
 
{|class="wikitable" style="background-color: #FFFFFF"
 
|rowspan="2" colspan="3"! {{diagonal split header|Function|<math>\varphi</math>}}
 
!style='border-style: solid solid none solid;'|<math>\sin \varphi</math>
 
!style='border-style: solid solid none solid;'|<math>\cos \varphi</math>
 
!style='border-style: solid solid none solid;'|<math>\tan \varphi</math>
 
!style='border-style: solid solid none solid;'|<math>\csc \varphi</math>
 
!style='border-style: solid solid none solid;'|<math>\sec \varphi</math>
 
!style='border-style: solid solid none solid;'|<math>\cot \varphi</math>
 
|-
 
<!-- Spanned from above --><!--
 
!style='border-style: none solid solid solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 
!style='border-style: none solid solid solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 
!style='border-style: none solid solid solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 
!style='border-style: none solid solid solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 
!style='border-style: none solid solid solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 
!style='border-style: none solid solid solid;'|<math>\scriptstyle|\,\scriptstyle|</math>
 
|-
 
|style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|<math>\varphi</math>
 
|style='border-style: solid none solid none; text-align: right; padding-left: ;'|<math>=</math>
 
|style='border-style: solid solid solid none; text-align: right; padding-left: ;'|<math>- \theta</math>
 
|style='text-align: right;'|<math>- \sin \theta</math>
 
|style='text-align: right;'|<math>\cos \theta</math>
 
|style='text-align: right;'|<math>- \tan \theta</math>
 
|style='text-align: right;'|<math>- \csc \theta</math>
 
|style='text-align: right;'|<math>\sec \theta</math>
 
|style='text-align: right;'|<math>- \cot \theta</math>
 
|-
 
|style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|<math>\varphi</math>
 
|style='border-style: solid none solid none; text-align: right; padding-left: ;'|<math>=</math>
 
|style='border-style: solid solid solid none; text-align: right; padding-left: ;'|<math>\frac{\pi}{2} - \theta</math>
 
|style='text-align: right;'|<math>\cos \theta</math>
 
|style='text-align: right;'|<math>\sin \theta</math>
 
|style='text-align: right;'|<math>\cot \theta</math>
 
|style='text-align: right;'|<math>\sec \theta</math>
 
|style='text-align: right;'|<math>\csc \theta</math>
 
|style='text-align: right;'|<math>\tan \theta</math>
 
|-
 
|style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|<math>\varphi</math>
 
|style='border-style: solid none solid none; text-align: right; padding-left: ;'|<math>=</math>
 
|style='border-style: solid solid solid none; text-align: right; padding-left: ;'|<math>\pi - \theta</math>
 
|style='text-align: right;'|<math>\sin \theta</math>
 
|style='text-align: right;'|<math>- \cos \theta</math>
 
|style='text-align: right;'|<math>- \tan \theta</math>
 
|style='text-align: right;'|<math>\csc \theta</math>
 
|style='text-align: right;'|<math>- \sec \theta</math>
 
|style='text-align: right;'|<math>- \cot \theta</math>
 
|-
 
|style='border-style: solid none solid solid; text-align: right; padding-left: 2em;'|<math>\varphi</math>
 
|style='border-style: solid none solid none; text-align: right; padding-left: ;'|<math>=</math>
 
|style='border-style: solid none solid none; text-align: right; padding-left: ;'|<math>2 \pi - \theta</math>
 
|style='text-align: right;'|<math>- \sin \theta</math>
 
|style='text-align: right;'|<math>\cos \theta</math>
 
|style='text-align: right;'|<math>- \tan \theta</math>
 
|style='text-align: right;'|<math>- \csc \theta</math>
 
|style='text-align: right;'|<math>\sec \theta</math>
 
|style='text-align: right;'|<math>- \cot \theta</math>
 
|}
 
-->
 
  
 
=== Relationships between trigonometric functions and inverse trigonometric functions ===
 
=== Relationships between trigonometric functions and inverse trigonometric functions ===
Line 435: Line 377:
 
* [https://www.youtube.com/watch?v=KbYW9FDm-Zk Derivatives of Inverse Trigonometric Functions], The Organic Chemistry Tutor
 
* [https://www.youtube.com/watch?v=KbYW9FDm-Zk Derivatives of Inverse Trigonometric Functions], The Organic Chemistry Tutor
  
== References==
+
== Licensing ==  
# Taczanowski, Stefan (1978-10-01). "On the optimization of some geometric parameters in 14 MeV neutron activation analysis". Nuclear Instruments and Methods. ScienceDirect. 155 (3): 543–546. Bibcode:1978NucIM.155..543T. doi:10.1016/0029-554X(78)90541-4.
+
Content obtained and/or adapted from:
# Hazewinkel, Michiel (1994) [1987]. Encyclopaedia of Mathematics (unabridged reprint ed.). Kluwer Academic Publishers / Springer Science & Business Media. ISBN 978-155608010-4.
+
* [https://en.wikipedia.org/wiki/Inverse_trigonometric_functions Inverse trigonometric functions, Wikipedia] under a CC BY-SA license
# Ebner, Dieter (2005-07-25). Preparatory Course in Mathematics (PDF) (6 ed.). Department of Physics, University of Konstanz. Archived (PDF) from the original on 2017-07-26. Retrieved 2017-07-26.
 
# Mejlbro, Leif (2010-11-11). Stability, Riemann Surfaces, Conformal Mappings - Complex Functions Theory (PDF) (1 ed.). Ventus Publishing ApS / Bookboon. ISBN 978-87-7681-702-2. Archived from the original (PDF) on 2017-07-26. Retrieved 2017-07-26.
 
# Durán, Mario (2012). Mathematical methods for wave propagation in science and engineering. 1: Fundamentals (1 ed.). Ediciones UC. p. 88. ISBN 978-956141314-6.
 
# Hall, Arthur Graham; Frink, Fred Goodrich (January 1909). "Chapter II. The Acute Angle [14] Inverse trigonometric functions". Written at Ann Arbor, Michigan, USA. Trigonometry. Part I: Plane Trigonometry. New York, USA: Henry Holt and Company / Norwood Press / J. S. Cushing Co. - Berwick & Smith Co., Norwood, Massachusetts, USA. p. 15. Retrieved 2017-08-12. […] α = arcsin m: It is frequently read "arc-sine m" or "anti-sine m," since two mutually inverse functions are said each to be the anti-function of the other. […] A similar symbolic relation holds for the other trigonometric functions. […] This notation is universally used in Europe and is fast gaining ground in this country. A less desirable symbol, α = sin-1m, is still found in English and American texts. The notation α = inv sin m is perhaps better still on account of its general applicability. […]
 
# Klein, Christian Felix (1924) [1902]. Elementarmathematik vom höheren Standpunkt aus: Arithmetik, Algebra, Analysis (in German). 1 (3rd ed.). Berlin: J. Springer.
 
# Klein, Christian Felix (2004) [1932]. Elementary Mathematics from an Advanced Standpoint: Arithmetic, Algebra, Analysis. Translated by Hedrick, E. R.; Noble, C. A. (Translation of 3rd German ed.). Dover Publications, Inc. / The Macmillan Company. ISBN 978-0-48643480-3. Retrieved 2017-08-13.
 
# Dörrie, Heinrich (1965). Triumph der Mathematik. Translated by Antin, David. Dover Publications. p. 69. ISBN 978-0-486-61348-2.
 
# "Comprehensive List of Algebra Symbols". Math Vault. 2020-03-25. Retrieved 2020-08-29.
 
# Weisstein, Eric W. "Inverse Trigonometric Functions". mathworld.wolfram.com. Retrieved 2020-08-29.
 
# Beach, Frederick Converse; Rines, George Edwin, eds. (1912). "Inverse trigonometric functions". The Americana: a universal reference library. 21.
 
# John D. Cook (2021-02-11). "Trig functions across programming languages". Retrieved 2021-03-10.
 
# Cajori, Florian (1919). A History of Mathematics (2 ed.). New York, NY: The Macmillan Company. p. 272.
 
# Herschel, John Frederick William (1813). "On a remarkable Application of Cotes's Theorem". Philosophical Transactions. Royal Society, London. 103 (1): 8. doi:10.1098/rstl.1813.0005.
 
# "Inverse Trigonometric Functions | Brilliant Math & Science Wiki". brilliant.org. Retrieved 2020-08-29.
 
# Korn, Grandino Arthur; Korn, Theresa M. (2000) [1961]. "21.2.-4. Inverse Trigonometric Functions". Mathematical handbook for scientists and engineers: Definitions, theorems, and formulars for reference and review (3 ed.). Mineola, New York, USA: Dover Publications, Inc. p. 811. ISBN 978-0-486-41147-7.
 
# Bhatti, Sanaullah; Nawab-ud-Din; Ahmed, Bashir; Yousuf, S. M.; Taheem, Allah Bukhsh (1999). "Differentiation of Trigonometric, Logarithmic and Exponential Functions". In Ellahi, Mohammad Maqbool; Dar, Karamat Hussain; Hussain, Faheem (eds.). Calculus and Analytic Geometry (1 ed.). Lahore: Punjab Textbook Board. p. 140.
 

Latest revision as of 13:19, 15 January 2022

In mathematics, the inverse trigonometric functions (occasionally also called arcus functions, antitrigonometric functions or cyclometric functions are the inverse functions of the trigonometric functions (with suitably restricted domains). Specifically, they are the inverses of the sine, cosine, tangent (trigonometry)|tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

Notation

Several notations for the inverse trigonometric functions exist. The most common convention is to name inverse trigonometric functions using an arc- prefix: arcsin(x), arccos(x), arctan(x), etc. This notation arises from the following geometric relationships: when measuring in radians, an angle of θ radians will correspond to an arc whose length is , where r is the radius of the circle. Thus in the unit circle, "the arc whose cosine is x" is the same as "the angle whose cosine is x", because the length of the arc of the circle in radii is the same as the measurement of the angle in radians. In computer programming languages, the inverse trigonometric functions are often called by the abbreviated forms asin, acos, atan.

The notations sin−1(x), cos−1(x), tan−1(x), etc., as introduced by John Herschel in 1813, are often used as well in English-language sources—conventions consistent with the notation of an inverse function. This might appear to conflict logically with the common semantics for expressions such as sin2(x), which refer to numeric power rather than function composition, and therefore may result in confusion between multiplicative inverse or reciprocal and compositional inverse. The confusion is somewhat mitigated by the fact that each of the reciprocal trigonometric functions has its own name—for example, (cos(x))−1 = sec(x). Nevertheless, certain authors advise against using it for its ambiguity. Another convention used by a few authors is to use an uppercase first letter, along with a −1 superscript: Sin−1(x), Cos−1(x), Tan−1(x), etc. This potentially avoids confusion with the multiplicative inverse, which should be represented by sin−1(x), cos−1(x), etc.

Since 2009, the ISO 80000-2 standard has specified solely the "arc" prefix for the inverse functions.

Basic concepts

Principal values

Since none of the six trigonometric functions are one-to-one, they must be restricted in order to have inverse functions. Therefore, the result ranges of the inverse functions are proper subsets of the domains of the original functions.

For example, using function in the sense of multivalued functions, just as the square root function could be defined from the function is defined so that For a given real number with there are multiple (in fact, countably infinite) numbers such that ; for example, but also etc. When only one value is desired, the function may be restricted to its principal branch. With this restriction, for each in the domain, the expression will evaluate only to a single value, called its principal value. These properties apply to all the inverse trigonometric functions.

The principal inverses are listed in the following table.

Name Usual notation Definition Domain of for real result Range of usual principal value
(radians)
Range of usual principal value
(degrees)
arcsine x = sin(y)
arccosine x = cos(y)
arctangent x = tan(y) all real numbers
arccotangent x = cot(y) all real numbers
arcsecant x = sec(y)
arccosecant x = csc(y)

Note: Some authors define the range of arcsecant to be , because the tangent function is nonnegative on this domain. This makes some computations more consistent. For example, using this range, whereas with the range , we would have to write since tangent is nonnegative on but nonpositive on For a similar reason, the same authors define the range of arccosecant to be

If is allowed to be a complex number, then the range of applies only to its real part.

Solutions to elementary trigonometric equations

Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of :

  • Sine and cosecant begin their period at (where is an integer), finish it at and then reverse themselves over to
  • Cosine and secant begin their period at finish it at and then reverse themselves over to
  • Tangent begins its period at finishes it at and then repeats it (forward) over to
  • Cotangent begins its period at finishes it at and then repeats it (forward) over to

This periodicity is reflected in the general inverses, where is some integer.

For example, if then for some While if then for some where will be even if and it will be odd if The equations and have the same solutions as and respectively. In all equations above except for those just solved (i.e. except for / and /), the integer in the solution's formula is uniquely determined by (for fixed and ).

Detailed example and explanation of the "plus or minus" symbol

The solutions to and involve the "plus or minus" symbol whose meaning is now clarified. Only the solution to will be discussed since the discussion for is the same. We are given between and we know that there is an angle in some give interval that satisfies We want to find this The formula for the solution involves:

If (which only happens when ) then and so either way, can only be equal to But if which will now be assumed, then the solution to which is written above as
is shorthand for the following statement: Either

  • for some integer
    or else
  • for some integer

Because and exactly one of these two equalities can hold. Additional information about is needed to determine which one holds. For example, suppose that and that all that is known about is that (and nothing more is known). Then

and moreover, in this particular case (for both the case and the case) and so consequently,
This means that could be either or Without additional information it is not possible to determine which of these values has. An example of some additional information that could determine the value of would be knowing that the angle is above the -axis (in which case ) or alternatively, knowing that it is below the -axis (in which case ).

Transforming equations

The equations above can be transformed by using the identities

So for example, by using the equality , the equation can be transformed into which allows for the solution to the equation (where ) to be used; that solution being: which becomes:

where using the fact that and substituting proves that another solution to is:
The substitution may be used express the right hand side of the above formula in terms of instead of

Relationships between trigonometric functions and inverse trigonometric functions

Trigonometric functions of inverse trigonometric functions are tabulated below. A quick way to derive them is by considering the geometry of a right-angled triangle, with one side of length 1 and another side of length then applying the Pythagorean theorem and definitions of the trigonometric ratios. Purely algebraic derivations are longer. It is worth noting that for arcsecant and arccosecant, the diagram assumes that is positive, and thus the result has to be corrected through the use of absolute values and the signum (sgn) operation.

Diagram
Trigonometric functions and inverse3.svg
Trigonometric functions and inverse.svg
Trigonometric functions and inverse2.svg
Trigonometric functions and inverse4.svg
Trigonometric functions and inverse6.svg
Trigonometric functions and inverse5.svg

Relationships among the inverse trigonometric functions

The usual principal values of the arcsin(x) (red) and arccos(x) (blue) functions graphed on the cartesian plane.
The usual principal values of the arctan(x) and arccot(x) functions graphed on the cartesian plane.
Principal values of the arcsec(x) and arccsc(x) functions graphed on the cartesian plane.

Complementary angles:

Negative arguments:

Reciprocal arguments:

Useful identities if one only has a fragment of a sine table:

Whenever the square root of a complex number is used here, we choose the root with the positive real part (or positive imaginary part if the square was negative real).

A useful form that follows directly from the table above is

.

It is obtained by recognizing that .

From the half-angle formula, , we get:

Arctangent addition formula

This is derived from the tangent addition formula

by letting

In calculus

Derivatives of inverse trigonometric functions

The derivatives for complex values of z are as follows:

Only for real values of x:

For a sample derivation: if , we get:

Expression as definite integrals

Integrating the derivative and fixing the value at one point gives an expression for the inverse trigonometric function as a definite integral:

When x equals 1, the integrals with limited domains are improper integrals, but still well-defined.

Indefinite integrals of inverse trigonometric functions

For real and complex values of z:

For real x ≥ 1:

For all real x not between -1 and 1:

The absolute value is necessary to compensate for both negative and positive values of the arcsecant and arccosecant functions. The signum function is also necessary due to the absolute values in the derivatives of the two functions, which create two different solutions for positive and negative values of x. These can be further simplified using the logarithmic definitions of the inverse hyperbolic functions:

The absolute value in the argument of the arcosh function creates a negative half of its graph, making it identical to the signum logarithmic function shown above.

All of these antiderivatives can be derived using integration by parts and the simple derivative forms shown above.

Example

Using (i.e. integration by parts), set

Then

which by the simple substitution yields the final result:

Resources

Review

Calculus

Licensing

Content obtained and/or adapted from: