Difference between revisions of "Arc Length and Surface Area"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
(2 intermediate revisions by one other user not shown)
Line 10: Line 10:
 
As we divide the interval <math>[a,b]</math> into more pieces this gives a better estimate for the length of <math>C</math> . In fact we make that a definition.
 
As we divide the interval <math>[a,b]</math> into more pieces this gives a better estimate for the length of <math>C</math> . In fact we make that a definition.
  
'''Length of a Curve''''
+
'''Length of a Curve'''
 
: The length of the curve <math>y=f(x)</math> for <math>a\le x\le b</math> is defined to be
 
: The length of the curve <math>y=f(x)</math> for <math>a\le x\le b</math> is defined to be
 
:: <math>L=\lim_{n\to\infty}\sum_{i=0}^{n-1}\bigl|P_{i+1}P_i\bigr|</math>
 
:: <math>L=\lim_{n\to\infty}\sum_{i=0}^{n-1}\bigl|P_{i+1}P_i\bigr|</math>
Line 20: Line 20:
 
:<math>L=\int\limits_a^b \sqrt{1+\left(\tfrac{dy}{dx}\right)^2}dx</math>
 
:<math>L=\int\limits_a^b \sqrt{1+\left(\tfrac{dy}{dx}\right)^2}dx</math>
  
'''Proof:''' Consider <math>y_{i+1}-y_i=f(x_{i+1})-f(x_i)</math> . By the [[Calculus/Mean Value Theorem for Functions|Mean Value Theorem]] there is a point <math>z_i</math> in <math>(x_{i+1},x_i)</math> such that
+
'''Proof:''' Consider <math>y_{i+1}-y_i=f(x_{i+1})-f(x_i)</math> . By the Mean Value Theorem there is a point <math>z_i</math> in <math>(x_{i+1},x_i)</math> such that
 
:<math>y_{i+1}-y_i=f(x_{i+1})-f(x_i)=f'(z_i)(x_{i+1}-x_i)</math>
 
:<math>y_{i+1}-y_i=f(x_{i+1})-f(x_i)=f'(z_i)(x_{i+1}-x_i)</math>
  
Line 49: Line 49:
  
 
'''Example'''
 
'''Example'''
: Length of the curve <math>y=2x</math> from <math>x=0</math> to <math>x=1</math>}}
+
: Length of the curve <math>y=2x</math> from <math>x=0</math> to <math>x=1</math>
 
As a sanity check of our formula, let's calculate the length of the "curve" <math>y=2x</math> from <math>x=0</math> to <math>x=1</math> . First let's find the answer using the Pythagorean Theorem.
 
As a sanity check of our formula, let's calculate the length of the "curve" <math>y=2x</math> from <math>x=0</math> to <math>x=1</math> . First let's find the answer using the Pythagorean Theorem.
 
:<math>P_0=(0,0)</math>
 
:<math>P_0=(0,0)</math>
Line 99: Line 99:
 
3. Find the circumference of the circle given by the parametric equations <math>x(t)=R\cos(t)</math> , <math>y(t)=R\sin(t)</math> , with <math>t</math> running from <math>0</math> to <math>2\pi</math>.
 
3. Find the circumference of the circle given by the parametric equations <math>x(t)=R\cos(t)</math> , <math>y(t)=R\sin(t)</math> , with <math>t</math> running from <math>0</math> to <math>2\pi</math>.
  
4. Find the length of one arch of the [[w:Cycloid|<u>cycloid</u>]] given by the parametric equations <math>x(t)=R\bigl(t-\sin(t)\bigr)</math> , <math>y(t)=R\bigl(1-\cos(t)\bigr)</math> , with <math>t</math> running from <math>0</math> to <math>2\pi</math>.
+
4. Find the length of one arch of the cycloid given by the parametric equations <math>x(t)=R\bigl(t-\sin(t)\bigr)</math> , <math>y(t)=R\bigl(1-\cos(t)\bigr)</math> , with <math>t</math> running from <math>0</math> to <math>2\pi</math>.
  
 
===Exercise Solutions===
 
===Exercise Solutions===
Line 221: Line 221:
  
 
* [https://youtu.be/lQM-0Nqs9Pg Surface Area of Revolution By Integration] by The Organic Chemistry Tutor
 
* [https://youtu.be/lQM-0Nqs9Pg Surface Area of Revolution By Integration] by The Organic Chemistry Tutor
 +
 +
==Licensing==
 +
Content obtained and/or adapted from:
 +
* [https://en.wikibooks.org/wiki/Calculus/Arc_length Arc Length, WikiBooks: Calculus] under a CC BY-SA license
 +
* [https://en.wikibooks.org/wiki/Calculus/Surface_area Surface Area, WikiBooks: Calculus] under a CC BY-SA license

Latest revision as of 16:58, 15 January 2022

Arc Length

Suppose that we are given a function that is continuous on an interval and we want to calculate the length of the curve drawn out by the graph of from to . If the graph were a straight line this would be easy — the formula for the length of the line is given by Pythagoras' theorem. And if the graph were a piecewise linear function we can calculate the length by adding up the length of each piece.

The problem is that most graphs are not linear. Nevertheless we can estimate the length of the curve by approximating it with straight lines. Suppose the curve is given by the formula for . We divide the interval into subintervals with equal width and endpoints . Now let so is the point on the curve above . The length of the straight line between and is

So an estimate of the length of the curve is the sum

As we divide the interval into more pieces this gives a better estimate for the length of . In fact we make that a definition.

Length of a Curve

The length of the curve for is defined to be

The Arclength Formula

Suppose that is continuous on . Then the length of the curve given by between and is given by

And in Leibniz notation

Proof: Consider . By the Mean Value Theorem there is a point in such that

So

Putting this into the definition of the length of gives

Now this is the definition of the integral of the function between and (notice that is continuous because we are assuming that is continuous). Hence

as claimed.

Example

Length of the curve from to

As a sanity check of our formula, let's calculate the length of the "curve" from to . First let's find the answer using the Pythagorean Theorem.

and

so the length of the curve, , is

Now let's use the formula

Exercises

1. Find the length of the curve from to .

2. Find the length of the curve from to .

Arclength of a parametric curve

For a parametric curve, that is, a curve defined by and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=g(t)} , the formula is slightly different:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int\limits_a^b \sqrt{f'(t)^2+g'(t)^2}\,dt}

Proof: The proof is analogous to the previous one: Consider Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{i+1}-y_i=g(t_{i+1})-g(t_i)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{i+1}-x_i=f(t_{i+1})-f(t_i)} .

By the Mean Value Theorem there are points Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_i} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_i} in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (t_{i+1},t_i)} such that

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_{i+1}-y_i=g(t_{i+1})-g(t_i)=g'(c_i)(t_{i+1}-t_i)}

and

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{i+1}-x_i=f(t_{i+1})-f(t_i)=f'(d_i)(t_{i+1}-t_i)}

So

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigl|P_iP_{i+1}\bigr|} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sqrt{(x_{i+1}-x_i)^2+(y_{i+1}-y_i)^2}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sqrt{f'(d_i)^2(t_{i+1}-t_i)^2+g'(c_i)^2(t_{i+1}-t_i)^2}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sqrt{\bigl(f'(d_i)^2+g'(c_i)^2\bigr)(t_{i+1}-t_i)^2}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sqrt{f'(d_i)^2+g'(c_i)^2}\Delta t}

Putting this into the definition of the length of the curve gives

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\lim_{n\to\infty}\sum_{i=0}^{n-1}\sqrt{f'(d_i)^2+g'(c_i)^2}\Delta t}

This is equivalent to:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\int\limits_a^b \sqrt{f'(t)^2+g'(t)^2}\,dt}

Exercises

3. Find the circumference of the circle given by the parametric equations Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t)=R\cos(t)} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y(t)=R\sin(t)} , with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} running from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\pi} .

4. Find the length of one arch of the cycloid given by the parametric equations Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t)=R\bigl(t-\sin(t)\bigr)} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y(t)=R\bigl(1-\cos(t)\bigr)} , with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} running from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\pi} .

Exercise Solutions

  1. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{13\sqrt{13}-8}{27}}
  2. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{e-\frac{1}{e}}{2}}
  3. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\pi R}
  4. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8R}

Surface Area

Suppose we are given a function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} and we want to calculate the surface area of the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} rotated around a given line. The calculation of surface area of revolution is related to the arc length calculation.

If the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is a straight line, other methods such as surface area formulae for cylinders and conical frusta can be used. However, if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is not linear, an integration technique must be used.

Recall the formula for the lateral surface area of a conical frustum:

where is the average radius and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l} is the slant height of the frustum.

For Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\le x\le b} , we divide Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]} into subintervals with equal width Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta x} and endpoints Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0,x_1,\ldots,x_n} . We map each point Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_i=f(x_i)} to a conical frustum of width Δx and lateral surface area Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_i} .

We can estimate the surface area of revolution with the sum

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=\sum_{i=0}^n A_i}

As we divide Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]} into smaller and smaller pieces, the estimate gives a better value for the surface area.

Definition (Surface of Revolution)

The surface area of revolution of the curve Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=f(x)} about a line for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\le x\le b} is defined to be

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=\lim_{n\to\infty}\sum_{i=0}^n A_i}

The Surface Area Formula

Suppose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is a continuous function on the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r(x)} represents the distance from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} to the axis of rotation. Then the lateral surface area of revolution about a line is given by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A = 2\pi\int_a^b r(x) \sqrt{1+f'(x)^2} \, dx}

And in Leibniz notation

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=2\pi\int_a^b r(x) \sqrt{1 + \left(\tfrac{dy}{dx}\right)^2}\,dx}

Proof:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\lim_{n\to\infty}\sum_{i=1}^n A_i}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\lim_{n\to\infty}\sum_{i=1}^n 2\pi r_il_i}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =2\pi\cdot\lim_{n\to\infty}\sum_{i=1}^n r_il_i}

As Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\to\infty} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x\to 0} , we know two things:

  1. the average radius of each conical frustum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_i} approaches a single value
  2. the slant height of each conical frustum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l_i} equals an infitesmal segment of arc length

From the arc length formula discussed in the previous section, we know that

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l_i=\sqrt{1+f'(x_i)^2}}

Therefore

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =2\pi\cdot\lim_{n\to\infty}\sum_{i=1}^n r_il_i}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =2\pi\cdot\lim_{n\to\infty}\sum_{i=1}^n r_i\sqrt{1+f'(x_i)^2}\Delta x}

Because of the definition of an integral Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_a^b f(x)dx=\lim_{n\to\infty}\sum_{i=1}^n f(c_i)\Delta x_i} , we can simplify the sigma operation to an integral.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=2\pi\int_a^b r(x) \sqrt{1+f'(x)^2} dx}

Or if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is in terms of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} on the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [c,d]}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A=2\pi\int_c^d r(y) \sqrt{1+f'(y)^2} dy}


Resources

Arc Length


Surface Area

Licensing

Content obtained and/or adapted from: