Difference between revisions of "Trigonometric Integrals"
(Added video links) |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | |||
− | + | When the integrand is primarily or exclusively based on trigonometric functions, the following techniques are useful. | |
− | + | ===Powers of Sine and Cosine=== | |
+ | We will give a general method to solve generally integrands of the form <math>\cos^m(x)\cdot\sin^n(x)</math> . First let us work through an example. | ||
− | + | :<math>\int\cos^3(x)\sin^2(x)dx</math> | |
− | + | Notice that the integrand contains an odd power of cos. So rewrite it as | |
− | + | :<math>\int\cos^2(x)\sin^2(x)\cos(x)dx</math> | |
− | + | We can solve this by making the substitution <math>u=\sin(x)</math> so <math>du=\cos(x)dx</math> . Then we can write the whole integrand in terms of <math>u</math> by using the identity | |
+ | :<math>\cos^2(x)=1-\sin^2(x)=1-u^2</math> . | ||
+ | So | ||
+ | :{| | ||
+ | |<math>\int\cos^3(x)\sin^2(x)dx</math> | ||
+ | |<math>=\int\cos^2(x)\sin^2(x)\cos(x)dx</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>=\int (1-u^2)u^2du</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>=\int u^2du-\int u^4du</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>=\frac{u^3}{3}+\frac{u^5}{5}+C</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>=\frac{\sin^3(x)}{3}-\frac{\sin^5(x)}{5}+C</math> | ||
+ | |} | ||
− | + | This method works whenever there is an odd power of sine or cosine. | |
− | + | <blockquote style="background: white; border: 1px solid black; padding: 1em;"> | |
+ | To evaluate <math>\int\cos^m(x)\sin^n(x)dx</math> when '''either''' <math>m</math> or <math>n</math> is '''odd'''. | ||
+ | *If <math>m</math> is odd substitute <math>u=\sin(x)</math> and use the identity <math>\cos^2(x)=1-\sin^2(x)=1-u^2</math> . | ||
+ | *If <math>n</math> is odd substitute <math>u=\cos(x)</math> and use the identity <math>\sin^2(x)=1-\cos^2(x)=1-u^2</math> . | ||
+ | </blockquote> | ||
− | + | ====Example==== | |
+ | Find <math>\int\limits_0^\frac{\pi}{2} \cos^{40}(x)\sin^3(x)dx</math> . | ||
− | + | As there is an odd power of <math>\sin</math> we let <math>u=\cos(x)</math> so <math>du=-\sin(x)dx</math> . Notice that when <math>x=0</math> we have <math>u=\cos(0)=1</math> and when <math>x=\frac{\pi}{2}</math> we have <math>u=\cos(\tfrac{\pi}{2})=0</math> . | |
− | + | :{| | |
+ | |<math>\int\limits_0^\frac{\pi}{2} \cos^{40}(x)\sin^3(x)dx</math> | ||
+ | |<math>=\int\limits_0^\frac{\pi}{2} \cos^{40}(x)\sin^2(x)\sin(x)dx</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>=-\int\limits_1^0 u^{40}(1-u^2)du</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>=\int\limits_0^1 u^{40}(2-u^2)du</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>=\int\limits_0^5 | ||
+ | (u^{40}-u^{42})du</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>=\left(\frac{u^{41}}{41}-\frac{u^{43}}{43}\right)\Bigg|_0^1</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>=\frac{1}{41}-\frac{1}{43}</math> | ||
+ | |} | ||
− | + | When both <math>m</math> and <math>n</math> are even, things get a little more complicated. | |
− | + | <blockquote style="background: white; border: 1px solid black; padding: 1em;"> | |
+ | To evaluate <math>\int\cos^m(x)\sin^n(x)dx</math> when both <math>m</math> and <math>n</math> are '''even'''. | ||
− | [https://youtu.be/0TuZSSah5hc Integrals of trigonometric functions, tan^msec^n, odd m] by Krista King | + | <br>Use the identities <math>\sin^2(x)=\frac{1-\cos(2x)}{2}</math> and <math>\cos^2(x)=\frac{1+\cos(2x)}{2}</math> . |
+ | </blockquote> | ||
+ | |||
+ | ====Example==== | ||
+ | Find <math>\int\sin^2(x)\cos^4(x)dx</math> . | ||
+ | |||
+ | As <math>\sin^2(x)=\frac{1-\cos(2x)}{2}</math> and <math>\cos^2(x)=\frac{1+\cos(2x)}{2}</math> we have | ||
+ | :<math>\int\sin^2(x)\cos^4(x)dx=\int\left(\frac{1-\cos(2x)}{2}\right)\left(\frac{1+\cos(2x)}{2}\right)^2dx</math> | ||
+ | and expanding, the integrand becomes | ||
+ | :<math>\frac{1}{8}\int\left(1-\cos^2(2x)+\cos(2x)-\cos^3(2x)\right)dx</math> | ||
+ | |||
+ | Using the multiple angle identities | ||
+ | |||
+ | :{| | ||
+ | |<math>I</math> | ||
+ | |<math>=\frac{1}{8}\left(\int 1dx-\int\cos^2(2x)dx+\int\cos(2x)dx-\int\cos^3(2x)dx\right)</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>=\frac{1}{8}\left(x-\frac{1}{2}\int\Big(1+\cos(4x)\Big)dx+\frac{\sin(2x)}{2}-\int\cos^2(2x)\cos(2x)dx\right)</math> | ||
+ | |- | ||
+ | | | ||
+ | |TODO: CORRECT FORMULA<math>=\frac{1}{164}\left(x+\sin(2x)+\int\cos(4x)dx-2\int\Big(1-\sin^2(2x)\Big)\cos(2x)dx\right)</math> | ||
+ | |} | ||
+ | |||
+ | then we obtain on evaluating | ||
+ | :<math>I=\frac{x}{16}-\frac{\sin(4x)}{64}+\frac{\sin^3(2x)}{48}+C</math> | ||
+ | |||
+ | ===Powers of Tan and Secant=== | ||
+ | <blockquote style="background: white; border: 1px solid black; padding: 1em;"> | ||
+ | To evaluate <math>\int\tan^m(x)\sec^n(x)dx</math> . | ||
+ | #If <math>n</math> is even and <math>n\ge 2</math> then substitute <math>u=tan(x)</math> and use the identity <math>\sec^2(x)=1+\tan^2(x)</math> . | ||
+ | #If <math>n</math> and <math>m</math> are both odd then substitute <math>u=\sec(x)</math> and use the identity <math>\tan^2(x)=\sec^2(x)-1</math> . | ||
+ | #If <math>n</math> is odd and <math>m</math> is even then use the identity <math>\tan^2(x)=\sec^2(x)-1</math> and apply a reduction formula to integrate <math>\sec^j(x)dx</math> , using the examples below to integrate when <math>j=1,2</math> . | ||
+ | </blockquote> | ||
+ | |||
+ | ====Example 1==== | ||
+ | Find <math>\int\sec^2(x)dx</math> . | ||
+ | |||
+ | There is an even power of <math>\sec(x)</math> . Substituting <math>u=\tan(x)</math> gives <math>du=\sec^2(x)dx</math> so | ||
+ | |||
+ | <math>\int\sec^2(x)dx=\int du=u+C=\tan(x)+C.</math> | ||
+ | |||
+ | |||
+ | ====Example 2==== | ||
+ | Find <math>\int\tan(x)dx</math> . | ||
+ | |||
+ | Let <math>u=\cos(x)</math> so <math>du=-\sin(x)dx</math> . Then | ||
+ | |||
+ | :{| | ||
+ | |<math>\int\tan(x)dx</math> | ||
+ | |<math>=\int\frac{\sin(x)}{\cos(x)}dx</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>=\int -\frac{du}{u}</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>=-\ln|u|+C</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>=-\ln\Big|\cos(x)\Big|+C</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>=\ln\Big|\sec(x)\Big|+C</math> | ||
+ | |} | ||
+ | |||
+ | |||
+ | ====Example 3==== | ||
+ | Find <math>\int\sec(x)dx</math> . | ||
+ | |||
+ | The trick to do this is to multiply and divide by the same thing like this: | ||
+ | |||
+ | :{| | ||
+ | |<math>\int\sec(x)dx</math> | ||
+ | |<math>=\int\sec(x)\frac{\sec(x)+\tan(x)}{\sec(x)+\tan(x)}dx</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>=\int\frac{\sec^2(x)+\sec(x)\tan(x)}{\sec(x)+\tan(x)}dx</math> | ||
+ | |} | ||
+ | |||
+ | Making the substitution <math>u=\sec(x)+\tan(x)</math> so <math>du=\sec(x)\tan(x)+\sec^2(x)dx</math> , | ||
+ | |||
+ | :{| | ||
+ | |<math>\int\sec(x)dx</math> | ||
+ | |<math>=\int\frac{du}{u}</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>=\ln|u|+C</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>\ln\Big|\sec(x)+\tan(x)\Big|+C</math> | ||
+ | |} | ||
+ | |||
+ | ===More trigonometric combinations=== | ||
+ | <blockquote style="background: white; border: 1px solid black; padding: 1em;"> | ||
+ | For the integrals <math>\int\sin(nx)\cos(mx)dx</math> or <math>\int\sin(nx)\sin(mx)dx</math> or <math>\int\cos(nx)\cos(mx)dx</math> | ||
+ | use the identities | ||
+ | *<math>\sin(a)\cos(b)=\frac{\sin(a+b)+\sin(a-b)}{2}</math> | ||
+ | *<math>\sin(a)\sin(b)=\frac{\cos(a-b)-\cos(a+b)}{2}</math> | ||
+ | *<math>\cos(a)\cos(b)=\frac{\cos(a-b)+\cos(a+b)}{2}</math> | ||
+ | </blockquote> | ||
+ | |||
+ | ====Example 1==== | ||
+ | Find <math>\int\sin(3x)\cos(5x)dx</math> . | ||
+ | |||
+ | We can use the fact that <math>\sin(a)\cos(b)=\frac{\sin(a+b)+\sin(a-b)}{2}</math> , so | ||
+ | :<math>\sin(3x)\cos(5x)=\frac{\sin(8x)+\sin(-2x)}{2}</math> | ||
+ | Now use the oddness property of <math>\sin(x)</math> to simplify | ||
+ | :<math>\sin(3x)\cos(5x)=\frac{\sin(8x)-\sin(2x)}{2}</math> | ||
+ | And now we can integrate | ||
+ | :{| | ||
+ | |<math>\int\sin(3x)\cos(5x)dx</math> | ||
+ | |<math>=\int\Big(\frac{\sin(8x)-\sin(2x)}{2}\Big)dx</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>=\frac{\cos(2x)}{4}-\frac{\cos(8x)}{16}+C</math> | ||
+ | |} | ||
+ | |||
+ | ====Example 2==== | ||
+ | Find:<math>\int\sin(x)\sin(2x)dx</math> . | ||
+ | |||
+ | Using the identities | ||
+ | :<math>\sin(x)\sin(2x)=\frac{\cos(-x)-\cos(3x)}{2}=\frac{\cos(x)-\cos(3x)}{2}</math> | ||
+ | Then | ||
+ | :{| | ||
+ | |<math>\int\sin(x)\sin(2x)dx</math> | ||
+ | |<math>=\frac{1}{2}\int\Big(\cos(x)-\cos(3x)\Big)dx</math> | ||
+ | |- | ||
+ | | | ||
+ | |<math>=\frac{\sin(x)}{2}-\frac{\sin(3x)}{6}+C</math> | ||
+ | |} | ||
+ | |||
+ | ==Resources== | ||
+ | *[https://youtu.be/Sv-bSbAQeXc Trigonometric Integrals Involving Powers of Sine and Cosine - Part 1] by James Sousa | ||
+ | |||
+ | *[https://youtu.be/vPnuigP8I6I Trigonometric Integrals Involving Powers of Sine and Cosine - Part 2] by James Sousa | ||
+ | |||
+ | *[https://youtu.be/RGaDMqhOg8Y Trigonometric Integrals Involving Powers of Secant and Tangent - Part 1] by James Sousa | ||
+ | |||
+ | *[https://youtu.be/o8sIHlS17qc Trigonometric Integrals Involving Powers of Secant and Tangent - Part 1] by James Sousa | ||
+ | |||
+ | *[https://youtu.be/lTqnlihOC4o Trigonometric Integrals - Part 1 of 6] by patrickJMT | ||
+ | |||
+ | *[https://youtu.be/zyg9k1je7Fg Trigonometric Integrals - Part 2 of 6] by patrickJMT | ||
+ | |||
+ | *[https://youtu.be/BhJ4soojyAQ Trigonometric Integrals - Part 3 of 6] by patrickJMT | ||
+ | |||
+ | *[https://youtu.be/8CHHY-2Ctug Trigonometric Integrals - Part 4 of 6] by patrickJMT | ||
+ | |||
+ | *[https://youtu.be/QdNScjd5bno Trigonometric Integrals - Part 5 of 6] by patrickJMT | ||
+ | |||
+ | *[https://youtu.be/m3zG7c52QR4 Trigonometric Integrals - Part 6 of 6] by patrickJMT | ||
+ | |||
+ | *[https://youtu.be/WYhyq_mTCZs Trigonometric integrals - sin^mcos^n, odd m] by Kriata King | ||
+ | |||
+ | *[https://youtu.be/RRDiT-djQPk Trigonometric integrals - sin^mcos^n, odd n] by Kriata King | ||
+ | |||
+ | *[https://youtu.be/rpbr2nH7lNY Trigonometric integrals - sin^mcos^n, m and n even] by Kriata King | ||
+ | |||
+ | *[https://youtu.be/CK2SfrzF_c4 Integrals of trigonometric functions, tan^msec^n, even n] by Krista King | ||
+ | |||
+ | *[https://youtu.be/0TuZSSah5hc Integrals of trigonometric functions, tan^msec^n, odd m] by Krista King | ||
+ | |||
+ | ==Licensing== | ||
+ | Content obtained and/or adapted from: | ||
+ | * [https://en.wikibooks.org/wiki/Calculus/Integration_techniques/Trigonometric_Integrals Trigonometric integrals, Wikibooks: Calculus/Integration techniques] under a CC BY-SA license |
Latest revision as of 17:34, 15 January 2022
When the integrand is primarily or exclusively based on trigonometric functions, the following techniques are useful.
Contents
Powers of Sine and Cosine
We will give a general method to solve generally integrands of the form . First let us work through an example.
Notice that the integrand contains an odd power of cos. So rewrite it as
We can solve this by making the substitution so . Then we can write the whole integrand in terms of by using the identity
- .
So
This method works whenever there is an odd power of sine or cosine.
To evaluate when either or is odd.
- If is odd substitute and use the identity .
- If is odd substitute and use the identity .
Example
Find .
As there is an odd power of we let so . Notice that when we have and when we have .
When both and are even, things get a little more complicated.
To evaluate when both and are even.
Use the identities and .
Example
Find .
As and we have
and expanding, the integrand becomes
Using the multiple angle identities
TODO: CORRECT FORMULA
then we obtain on evaluating
Powers of Tan and Secant
To evaluate .
- If is even and then substitute and use the identity .
- If and are both odd then substitute and use the identity .
- If is odd and is even then use the identity and apply a reduction formula to integrate , using the examples below to integrate when .
Example 1
Find .
There is an even power of . Substituting gives so
Example 2
Find .
Let so . Then
Example 3
Find .
The trick to do this is to multiply and divide by the same thing like this:
Making the substitution so ,
More trigonometric combinations
For the integrals or or use the identities
Example 1
Find .
We can use the fact that , so
Now use the oddness property of to simplify
And now we can integrate
Example 2
Find: .
Using the identities
Then
Resources
- Trigonometric Integrals - Part 1 of 6 by patrickJMT
- Trigonometric Integrals - Part 2 of 6 by patrickJMT
- Trigonometric Integrals - Part 3 of 6 by patrickJMT
- Trigonometric Integrals - Part 4 of 6 by patrickJMT
- Trigonometric Integrals - Part 5 of 6 by patrickJMT
- Trigonometric Integrals - Part 6 of 6 by patrickJMT
- Trigonometric integrals - sin^mcos^n, odd m by Kriata King
- Trigonometric integrals - sin^mcos^n, odd n by Kriata King
- Trigonometric integrals - sin^mcos^n, m and n even by Kriata King
- Integrals of trigonometric functions, tan^msec^n, even n by Krista King
- Integrals of trigonometric functions, tan^msec^n, odd m by Krista King
Licensing
Content obtained and/or adapted from:
- Trigonometric integrals, Wikibooks: Calculus/Integration techniques under a CC BY-SA license