Difference between revisions of "MAT5203"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
Introduction to Lebesgue measure and integration.
+
Introduction to Lebesgue measure and integration. Sample textbook: Real Analysis by H. L. Royden.
  
 
==Topics List==
 
==Topics List==
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
! Week !! Sections from Royden !! Prerequisite Skills !! Student Learning Outcomes
+
! Week !! Topic !! Sections from Royden !! Prerequisites
 
|-
 
|-
 
|  1   
 
|  1   
Line 10: Line 10:
 
|| Undergraduate real analysis.
 
|| Undergraduate real analysis.
 
|-
 
|-
|  2   
+
|  2-3    
 
|| [[Topology of the real line]]
 
|| [[Topology of the real line]]
 
|| 1.4-1.6
 
|| 1.4-1.6
|| Undergraduate real analysis.
 
|-
 
|  3 
 
||
 
||
 
||
 
|-
 
|  4 
 
||
 
||
 
||
 
|-
 
|  5 
 
||
 
||
 
||
 
|-
 
|  6 
 
||
 
||
 
||
 
|-
 
|  7 
 
||
 
||
 
||
 
|-
 
|  8 
 
||
 
||
 
||
 
|-
 
|  9 
 
||
 
||
 
||
 
|-
 
|  10 
 
||
 
||
 
||
 
|-
 
|  11 
 
||
 
||
 
||
 
|-
 
|  12 
 
||
 
||
 
||
 
|-
 
|  13 
 
||
 
||
 
||
 
|-
 
|  14 
 
||
 
||
 
||
 
|-
 
|  15 
 
||
 
||
 
||
 
|-
 
|  16 
 
||
 
||
 
||
 
|-
 
|  17 
 
||
 
||
 
||
 
|-
 
|  18 
 
||
 
||
 
||
 
|-
 
|  19 
 
||
 
||
 
||
 
|-
 
|  20 
 
||
 
||
 
 
||  
 
||  
 
|-
 
|-
21    
+
4-5    
||  
+
|| [[Lebesgue measurable sets]]
||  
+
|| 2.1-2.7
 
||  
 
||  
 
|-
 
|-
22    
+
7-9    
||  
+
|| [[Lebesgue measurable sets]]
||  
+
|| 2.1-2.7
 
||  
 
||  
 
|-
 
|-
23 
+
10-12    
||
+
|| [[Lebesgue integration]]
||
+
|| 4.1-4.6
||
 
|-
 
|  24 
 
||
 
||
 
||
 
|-
 
|  25 
 
||
 
||
 
||
 
|-
 
|  26 
 
||
 
||
 
||
 
|-
 
|  26 
 
||
 
||
 
||
 
|-
 
|  27 
 
||
 
||
 
||
 
|-
 
|  28    
 
||  
 
||  
 
||
 
|-
 
|  29
 
||
 
||
 
||
 
|-
 
|  30 
 
||
 
||
 
||
 
|-
 
|  31 
 
||
 
||
 
||
 
|-
 
|  32 
 
||
 
||
 
||
 
|-
 
|  33 
 
||
 
||
 
 
||  
 
||  
 
|}
 
|}

Latest revision as of 14:06, 18 March 2023

Introduction to Lebesgue measure and integration. Sample textbook: Real Analysis by H. L. Royden.

Topics List

Week Topic Sections from Royden Prerequisites
1 Review of the field and completeness axions 1.1-1.3 Undergraduate real analysis.
2-3 Topology of the real line 1.4-1.6
4-5 Lebesgue measurable sets 2.1-2.7
7-9 Lebesgue measurable sets 2.1-2.7
10-12 Lebesgue integration 4.1-4.6