Difference between revisions of "Arc Length"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 6: Line 6:
 
For those who prefer simplicity, the formula can be rewritten into:<blockquote><math>L=\int_a^b|\mathbf{r}'(t)|dt\quad </math> or <math>\quad\frac{dL}{dt}=|\mathbf{r}'(t)|</math></blockquote>
 
For those who prefer simplicity, the formula can be rewritten into:<blockquote><math>L=\int_a^b|\mathbf{r}'(t)|dt\quad </math> or <math>\quad\frac{dL}{dt}=|\mathbf{r}'(t)|</math></blockquote>
  
===Example Problem===
+
===Example Problems===
Find the circumference of the circle given by the parametric equations <math>x(t)=R\cos(t),y(t)=R\sin(t)</math> , with <math>t\in[0,2\pi]</math>.
+
1. Find the circumference of the circle given by the parametric equations <math>x(t)=R\cos(t),y(t)=R\sin(t)</math> , with <math>t\in[0,2\pi]</math>.
  
 
:<math>\begin{align}s&=\int\limits_0^{2\pi}\sqrt{\left(\tfrac{d}{dt}\big(R\cos(t)\big)\right)^2+\left(\tfrac{d}{dt}\big(R\sin(t)\big)\right)^2}dt\\
 
:<math>\begin{align}s&=\int\limits_0^{2\pi}\sqrt{\left(\tfrac{d}{dt}\big(R\cos(t)\big)\right)^2+\left(\tfrac{d}{dt}\big(R\sin(t)\big)\right)^2}dt\\
Line 15: Line 15:
 
&=R\cdot t\Big|_0^{2\pi}\\
 
&=R\cdot t\Big|_0^{2\pi}\\
 
&=\mathbf{2\pi R}\end{align}</math>
 
&=\mathbf{2\pi R}\end{align}</math>
 +
 +
2. Find the length of the curve <math>y=\frac{e^x+e^{-x}}{2}</math> from <math>x=0</math> to <math>x=1</math>.
 +
 +
:<math>\begin{align}s&=\int\limits_0^1\sqrt{1+\left(\frac{d}{dx}\left(\frac{e^{x}+e^{-x}}{2}\right)\right)^2}dx\\
 +
&=\int\limits_0^1\sqrt{1+\left(\frac{e^{x}-e^{-x}}{2}\right)^2}dx\\
 +
&=\int\limits_0^1\sqrt{1+\frac{e^{2x}-2+e^{-2x}}{4}}dx\\
 +
&=\int\limits_0^1\sqrt{\frac{e^{2x}+2+e^{-2x}}{4}}dx\\
 +
&=\int\limits_0^1\sqrt{\left(\frac{e^{x}+e^{-x}}{2}\right)^2}dx\\
 +
&=\int\limits_0^1\frac{e^{x}+e^{-x}}{2}dx\\
 +
&=\frac{e^{x}-e^{-x}}{2}\bigg|_0^1\\
 +
&=\mathbf{\frac{e-\frac1e}{2}}\end{align}</math>
  
 
==Resources==
 
==Resources==
 +
* [https://en.wikibooks.org/wiki/Calculus/Arc_length Arc Length], WikiBooks: Calculus
 
* [https://openstax.org/books/calculus-volume-3/pages/3-3-arc-length-and-curvature Arc Length and Curvature], OpenStax
 
* [https://openstax.org/books/calculus-volume-3/pages/3-3-arc-length-and-curvature Arc Length and Curvature], OpenStax
 +
 +
==Licensing==
 +
Content obtained and/or adapted from:
 +
* [https://en.wikibooks.org/wiki/Calculus/Arc_length Arc Length, WikiBooks: Calculus] under a CC BY-SA license

Latest revision as of 10:15, 2 November 2021

We can deduce that the length of a curve with parametric equations , should be:

Since vector functions are fundamentally parametric equations with directions, we can utilize the formula above into the length of a space curve.

Arc length of a space curve

If the curve has the vector equation , or, equivalently, the parametric equations , where are continuous, then the length of the curve from to is:

}}

For those who prefer simplicity, the formula can be rewritten into:

or

Example Problems

1. Find the circumference of the circle given by the parametric equations , with .

2. Find the length of the curve from to .

Resources

Licensing

Content obtained and/or adapted from: