Difference between revisions of "Lagrange Multipliers"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
Line 57: Line 57:
  
 
*[https://www.youtube.com/watch?v=nDuS5uQ7-lo Lagrange multipliers (3 variables) | MIT 18.02SC Multivariable Calculus, Fall 2010] Video by MIT OpenCourseWare
 
*[https://www.youtube.com/watch?v=nDuS5uQ7-lo Lagrange multipliers (3 variables) | MIT 18.02SC Multivariable Calculus, Fall 2010] Video by MIT OpenCourseWare
 +
 +
==Licensing==
 +
Content obtained and/or adapted from:
 +
* [https://en.wikibooks.org/wiki/Calculus_Optimization_Methods/Lagrange_Multipliers Lagrange Multipliers, WikiBooks: Calculus Optimization Methods] under a CC BY-SA license

Latest revision as of 15:52, 2 November 2021

The method of Lagrange multipliers solves the constrained optimization problem by transforming it into a non-constrained optimization problem of the form:

Then finding the gradient and Hessian as was done above will determine any optimum values of .

Suppose we now want to find optimum values for subject to from [2].

Then the Lagrangian method will result in a non-constrained function.

The gradient for this new function is

Finding the stationary points of the above equations can be obtained from their matrix from.

This results in .

Next we can use the Hessian as before to determine the type of this stationary point.

Since then the solution minimizes subject to with .


Resources

Videos

Licensing

Content obtained and/or adapted from: