Difference between revisions of "Separation of Variables"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
Line 70: Line 70:
  
 
*[https://youtu.be/Vc6MwLVdCuM Solving a Separable Differential Equation, Another Example #2] by patrickJMT
 
*[https://youtu.be/Vc6MwLVdCuM Solving a Separable Differential Equation, Another Example #2] by patrickJMT
 +
 +
==Licensing==
 +
Content obtained and/or adapted from:
 +
* [https://en.wikibooks.org/wiki/Ordinary_Differential_Equations/Separable_equations:_Separation_of_variables Separation of Variables, Wikibooks: Ordinary Differential Equations/Separable equations] under a CC BY-SA license

Latest revision as of 11:14, 29 October 2021

Definition

A separable ODE is an equation of the form

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x'(t) = g(t) f(x(t))}

for some functions , . In this chapter, we shall only be concerned with the case .

We often write for this ODE

for short, omitting the argument of .

[Note that the term "separable" comes from the fact that an important class of differential equations has the form

for some ; hence, a separable ODE is one of these equations, where we can "split" the as .]

Informal derivation of the solution

Using Leibniz' notation for the derivative, we obtain an informal derivation of the solution of separable ODEs, which serves as a good mnemonic.

Let a separable ODE

be given. Using Leibniz notation, it becomes

.

We now formally multiply both sides by and divide both sides by to obtain

.

Integrating this equation yields

.

Define

;

this shall mean that is a primitive of . If then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} is invertible, we get

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = F^{-1}\left( \int g(t) dt \right) = F^{-1} \circ G} ,

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} is a primitive of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} ; that is, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(s) = F^{-1}(G(s))} , now inserting the variable of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} back into the notation.

Now the formulae in this derivation don't actually mean anything; it's only a formal derivation. But below, we will prove that it actually yields the right result.

General solution

Theorem 2.1:
Let a separable, one-dimensional ODE
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x'(t) = g(t) f(x(t))}
be given, where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is never zero. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} be an antiderivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} an antiderivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} . If Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} is invertible, the function
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x(t) := F^{-1}(G(t))}
solves the ODE under consideration.

Proof:

By the inverse and chain rules,

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dt} F^{-1}(G(t)) = \frac{1}{\frac{1}{f(F^{-1}(G(t)))}} G'(t) = f(F^{-1}(G(t))) g(t)} ;

since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is never zero, the fraction occuring above involving Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} is well-defined.

Resources

Licensing

Content obtained and/or adapted from: