Difference between revisions of "Logarithmic and Exponential Equations"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
(One intermediate revision by one other user not shown)
Line 44: Line 44:
 
A '''logarithmic equation''' is an equation wherein one or more of the terms is a logarithm.
 
A '''logarithmic equation''' is an equation wherein one or more of the terms is a logarithm.
  
e.g. Solve <math>\lg x + \lg (x+2) = 2</math> <ref group="note"><math>\lg</math> is another way of writing <math>\log_{10}</math></ref>
+
e.g. Solve <math>\lg x + \lg (x+2) = 2</math>
  
 
<math>\begin{align}
 
<math>\begin{align}
Line 99: Line 99:
 
A '''power relationship''' is of the form <math>y = ax^b</math>. If we take the natural logarithm of both sides, we get <math>\ln y = \ln a + b \ln x</math>. This is a linear relationship between <math>\ln y</math> and <math>\ln x</math>.
 
A '''power relationship''' is of the form <math>y = ax^b</math>. If we take the natural logarithm of both sides, we get <math>\ln y = \ln a + b \ln x</math>. This is a linear relationship between <math>\ln y</math> and <math>\ln x</math>.
  
e.g. The amount of time that a planet takes to travel around the sun (its orbital period) and its distance from the sun are related by a power law. Use the following data<ref>Retrieved from [https://nssdc.gsfc.nasa.gov/planetary/factsheet/index.html NASA's Planetary Fact Sheet]</ref> to deduce this power law:
+
e.g. The amount of time that a planet takes to travel around the sun (its orbital period) and its distance from the sun are related by a power law. Use the following data to deduce this power law:
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 129: Line 129:
  
 
==Resources==
 
==Resources==
* [https://en.wikibooks.org/wiki/A-level_Mathematics/CIE/Pure_Mathematics_2/Logarithmic_and_Exponential_Functions Logarithmic and Exponential Functions], Wikibooks: A-level Mathematics
 
 
* [https://mathresearch.utsa.edu/wikiFiles/MAT1093/Logarithmic%20and%20Exponential%20Equations/Esparza%201093%20Notes%207.4.pdf Logarithmic and Exponential Equations]. Written notes created by Professor Esparza, UTSA.
 
* [https://mathresearch.utsa.edu/wikiFiles/MAT1093/Logarithmic%20and%20Exponential%20Equations/Esparza%201093%20Notes%207.4.pdf Logarithmic and Exponential Equations]. Written notes created by Professor Esparza, UTSA.
 +
 +
== Licensing ==
 +
Content obtained and/or adapted from:
 +
* [https://en.wikibooks.org/wiki/A-level_Mathematics/CIE/Pure_Mathematics_2/Logarithmic_and_Exponential_Functions Logarithmic and Exponential Functions, Wikibooks: A-level Mathematics] under a CC BY-SA license

Latest revision as of 17:16, 28 October 2021

Logarithms and Exponents

A logarithm is the inverse function of an exponent.

e.g. The inverse of the function is .

In general, , given that .

Laws of Logarithms

The laws of logarithms can be derived from the laws of exponentiation:

These laws apply to logarithms of any given base

Natural Logarithms

The natural logarithm is a logarithm with base , where is a constant such that the function is its own derivative.

The natural logarithm has a special symbol:

The graph exhibits exponential growth when and exponential decay when . The inverse graph is . Here is an interactive graph which shows the two functions as inverses of one another.

Solving Logarithmic and Exponential Equations

An exponential equation is an equation in which one or more of the terms is an exponential function. e.g. . Exponential equations can be solved with logarithms.

e.g. Solve

A logarithmic equation is an equation wherein one or more of the terms is a logarithm.

e.g. Solve

Converting Relationships to a Linear Form

In maths and science, it is easier to deal with linear relationships than non-linear relationships. Logarithms can be used to convert some non-linear relationships into linear relationships.

Exponential Relationships

An exponential relationship is of the form . If we take the natural logarithm of both sides, we get . We now have a linear relationship between and .

e.g. The following data is related with an exponential relationship. Determine this exponential relationship, then convert it to linear form.

x y
0 5
2 45
4 405

Now convert it to linear form by taking the natural logarithm of both sides:

Power Relationships

A power relationship is of the form . If we take the natural logarithm of both sides, we get . This is a linear relationship between and .

e.g. The amount of time that a planet takes to travel around the sun (its orbital period) and its distance from the sun are related by a power law. Use the following data to deduce this power law:

Planet Distance from Sun /106 km Orbital Period /days
Earth 149.6 365.2
Mars 227.9 687.0
Jupiter 778.6 4331

Resources

Licensing

Content obtained and/or adapted from: