Difference between revisions of "The Continuous Extension Theorem"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
(6 intermediate revisions by one other user not shown)
Line 3: Line 3:
 
<table class="wiki-content-table">
 
<table class="wiki-content-table">
 
<tr>
 
<tr>
 +
 
<blockquote style="background: white; border: 1px solid black; padding: 1em;">  
 
<blockquote style="background: white; border: 1px solid black; padding: 1em;">  
<td><strong>Lemma 1:</strong> If <math>f : A \to \mathbb{R}</math> is a uniformly continuous function and if <math>(x_n)</math> is a Cauchy Sequence from <math>A</math>, then <math>(f(x_n))</math> is a Cauchy sequence from <math>\mathbb{R}</math>.</td>
+
<strong>Lemma 1:</strong> If <math>f : A \to \mathbb{R}</math> is a uniformly continuous function and if <math>(x_n)</math> is a Cauchy Sequence from <math>A</math>, then <math>(f(x_n))</math> is a Cauchy sequence from <math>\mathbb{R}</math>.
 
</blockquote>
 
</blockquote>
 +
 
</tr>
 
</tr>
 
</table>
 
</table>
Line 20: Line 22:
 
<table class="wiki-content-table">
 
<table class="wiki-content-table">
 
<tr>
 
<tr>
 +
 
<blockquote style="background: white; border: 1px solid black; padding: 1em;">  
 
<blockquote style="background: white; border: 1px solid black; padding: 1em;">  
<td><strong>Theorem 1 (The Continuous Extension Theorem):</strong> If <math>I = (a,b)</math> is an interval, then <math>f : I \to \mathbb{R}</math> is a uniformly continuous function on <math>I</math> if and only if <math>f</math> can be defined at the endpoints <math>a</math> and <math>b</math> such that <math>f</math> is continuous on <math>[a, b]</math>.</td>
+
<strong>Theorem 1 (The Continuous Extension Theorem):</strong> If <math>I = (a,b)</math> is an interval, then <math>f : I \to \mathbb{R}</math> is a uniformly continuous function on <math>I</math> if and only if <math>f</math> can be defined at the endpoints <math>a</math> and <math>b</math> such that <math>f</math> is continuous on <math>[a, b]</math>.
 
</blockquote>
 
</blockquote>
 +
 
</tr>
 
</tr>
 
</table>
 
</table>
Line 32: Line 36:
 
</ul>
 
</ul>
  
<math>\begin{align} \lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} [f(y_n) - f(x_n) + f(x_n)] \\ \lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} [f(y_n) - f(x_n) ] + \lim_{n \to \infty} f(x_n) \\ \lim_{n \to \infty} f(y_n) = 0 + L = L \end{align}</math>
+
::: <math>\lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} [f(y_n) - f(x_n) + f(x_n)]</math>
 +
::: <math>\lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} [f(y_n) - f(x_n) ] + \lim_{n \to \infty} f(x_n)</math>
 +
::: <math>\lim_{n \to \infty} f(y_n) = 0 + L = L</math>
 +
 
 
<ul>
 
<ul>
 
<li>So for every sequence <math>(y_n)</math> in <math>(a, b)</math> that converges to <math>a</math>, we have that <math>(f(y_n))</math> converges to <math>L</math>. Therefore by the Sequential Criterion for Limits, we have that <math>f</math> has the limit <math>L</math> at the point <math>a</math>. Therefore, define <math>f(a) = L</math> and so <math>f</math> is continuous at <math>a</math>. We use the same argument for the endpoint <math>b</math>, and so <math>f</math> is can be extended so that <math>f</math> is continuous on <math>[a, b]</math>.</li>
 
<li>So for every sequence <math>(y_n)</math> in <math>(a, b)</math> that converges to <math>a</math>, we have that <math>(f(y_n))</math> converges to <math>L</math>. Therefore by the Sequential Criterion for Limits, we have that <math>f</math> has the limit <math>L</math> at the point <math>a</math>. Therefore, define <math>f(a) = L</math> and so <math>f</math> is continuous at <math>a</math>. We use the same argument for the endpoint <math>b</math>, and so <math>f</math> is can be extended so that <math>f</math> is continuous on <math>[a, b]</math>.</li>
Line 41: Line 48:
  
  
==Resources==
+
== Licensing ==  
* [http://mathonline.wikidot.com/the-continuous-extension-theorem The Continuous Extension Theorem], mathonline.wikidot.com
+
Content obtained and/or adapted from:
 +
* [http://mathonline.wikidot.com/the-continuous-extension-theorem The Continuous Extension Theorem, mathonline.wikidot.com] under a CC BY-SA license

Latest revision as of 11:05, 6 November 2021

The Uniform Continuity Theorem states that if a function is a closed and bounded interval and is continuous on , then must also be uniformly continuous on . The succeeding theorem will help us determine when a function is uniformly continuous when is instead a bounded open interval.

Before we look at The Continuous Extension Theorem though, we will need to prove the following lemma.

Lemma 1: If is a uniformly continuous function and if is a Cauchy Sequence from , then is a Cauchy sequence from .

  • Proof: Let be a uniformly continuous function and let be a Cauchy sequence from . We want to show that is also a Cauchy sequence. Recall that to show that is a Cauchy sequence we must show that then such that , if then .
  • Since is uniformly continuous on , then for any , such that for all where we have that .
  • Now for , since is a Cauchy sequence then such that we have that . So this will do for the sequence . So for all we have that and from the continuity of this implies that and so is a Cauchy sequence.

We are now ready to look at The Continuous Extension Theorem.

Theorem 1 (The Continuous Extension Theorem): If is an interval, then is a uniformly continuous function on if and only if can be defined at the endpoints and such that is continuous on .

  • Proof: Suppose that is uniformly continuous on . Let be a sequence in that converges to . Then since is a convergent sequence, it must also be a Cauchy sequence. By lemma 1, since is a Cauchy sequence then is also a Cauchy sequence, and so must converge in , that is for some .
  • Now suppose that is another sequence in that converges to . Then , and so by the uniform continuity of :
  • So for every sequence in that converges to , we have that converges to . Therefore by the Sequential Criterion for Limits, we have that has the limit at the point . Therefore, define and so is continuous at . We use the same argument for the endpoint , and so is can be extended so that is continuous on .
  • Suppose that is continuous on . By the Uniform Continuity Theorem, since is a closed and bounded interval then is uniformly continuous.


Licensing

Content obtained and/or adapted from: