Difference between revisions of "Integrals Resulting in Inverse Trigonometric Functions"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 28: Line 28:
 
<p>This integral requires two different methods to evaluate it. We get to those methods by splitting up the integral:</p>
 
<p>This integral requires two different methods to evaluate it. We get to those methods by splitting up the integral:</p>
  
<p><math> \int \frac{4-x}{\sqrt{16-x^2}}\text{dx}  = \int \frac{4}{\sqrt{16-x^2}}\text{dx}  - \int \frac{x}{\sqrt{16-x^2}}\text{dx}  </math>/p>
+
<p><math> \int \frac{4-x}{\sqrt{16-x^2}}\text{dx}  = \int \frac{4}{\sqrt{16-x^2}}\text{dx}  - \int \frac{x}{\sqrt{16-x^2}}\text{dx}  </math> </p>
  
 
<p>The first integral is handled straightforward; the second integral is handled by substitution, with <math>u = 16-x^2</math>. We handle each separately. </p>
 
<p>The first integral is handled straightforward; the second integral is handled by substitution, with <math>u = 16-x^2</math>. We handle each separately. </p>
Line 34: Line 34:
 
<p><math>\int \frac{4}{\sqrt{16-x^2}}\text{dx}  = 4\arcsin\frac{x}{4} + C.</math></p>
 
<p><math>\int \frac{4}{\sqrt{16-x^2}}\text{dx}  = 4\arcsin\frac{x}{4} + C.</math></p>
  
<p><math>\int\frac{x}{\sqrt{16-x^2}}\text{dx} </math>: Set <math>u = 16-x^2</math>, so <math>\text{du}  = -2x\text{dx} <math> and <math>x\text{dx}  = -\text{du} /2</math>. We have</p>
+
<p><math>\int\frac{x}{\sqrt{16-x^2}}\text{dx} </math>: Set <math>u = 16-x^2</math>, so <math>\text{du}  = -2x\text{dx} </math> and <math>x\text{dx}  = -\text{du} /2</math>. We have</p>
  
 
<p><math>\begin{align} \int\frac{x}{\sqrt{16-x^2}}\text{dx}  =  \int\frac{-\text{du} /2}{\sqrt{u}}\\ = -\frac12\int \frac{1}{\sqrt{u}}\text{du}  \\ = - \sqrt{u} + C\\ = -\sqrt{16-x^2} + C.\end{align}</math></p>
 
<p><math>\begin{align} \int\frac{x}{\sqrt{16-x^2}}\text{dx}  =  \int\frac{-\text{du} /2}{\sqrt{u}}\\ = -\frac12\int \frac{1}{\sqrt{u}}\text{du}  \\ = - \sqrt{u} + C\\ = -\sqrt{16-x^2} + C.\end{align}</math></p>

Latest revision as of 16:38, 15 January 2022


Example 1

Evaluate the integral

Solution

Substitute . Then and we have

Applying the formula with we obtain

Example 2

Evaluate .

Solution

This integral requires two different methods to evaluate it. We get to those methods by splitting up the integral:

The first integral is handled straightforward; the second integral is handled by substitution, with . We handle each separately.

: Set , so and . We have

Combining these together, we have

Resources

Licensing

Content obtained and/or adapted from: