Difference between revisions of "The Limit Laws"
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
+ | Now that we have the formal definition of a limit, we can set about proving some of the properties we stated earlier in this chapter about limits. | ||
+ | |||
+ | ===Constant Rule for Limits=== | ||
+ | : If <math>a,b</math> are constants then <math>\lim_{x\to a}b=b</math>. | ||
+ | |||
+ | Proof of the Constant Rule for Limits: We need to find a <math>\delta>0</math> such that for every <math>\varepsilon>0</math> , <math>|b-b|<\varepsilon</math> whenever <math>0<|x-a|<\delta</math> . <math>|b-b|=0</math> and <math>\varepsilon>0</math> , so <math>|b-b|<\varepsilon</math> is satisfied independent of any value of <math>\delta</math> ; that is, we can choose any <math>\delta</math> we like and the <math>\varepsilon</math> condition holds. | ||
+ | |||
+ | ===Identity Rule for Limits=== | ||
+ | : If <math>a</math> is a constant then <math>\lim_{x\to a}x=a</math>. | ||
+ | |||
+ | Proof: To prove that <math>\lim_{x\to a}x=a</math> , we need to find a <math>\delta>0</math> such that for every <math>\varepsilon>0</math> , <math>|x-a|<\varepsilon</math> whenever <math>0<|x-a|<\delta</math> . Choosing <math>\delta=\varepsilon</math> satisfies this condition. | ||
+ | |||
+ | ===Scalar Product Rule for Limits=== | ||
+ | : Suppose that <math>\lim_{x\to a}f(x)=L</math> for finite <math>L</math> and that <math>c</math> is constant. Then <math>\lim_{x\to a}c\cdot f(x)=c\cdot\lim_{x\to a}f(x)=c\cdot L</math>. | ||
+ | |||
+ | Proof: Given the limit above, there exists in particular a <math>\delta>0</math> such that <math>\Big|f(x)-L\Big|<\frac{\varepsilon}{k}</math> whenever <math>0<|x-a|<\delta</math> , for some <math>k>0</math> such that <math>|c|<k</math> . Hence | ||
+ | |||
+ | :<math>\Big|c\cdot f(x)-c\cdot L\Big|=|c|\cdot\Big|f(x)-L\Big|<k\cdot\frac{\varepsilon}{k}=\varepsilon</math>. | ||
+ | |||
+ | ===Sum Rule for Limits=== | ||
+ | : Suppose that <math>\lim_{x\to c}f(x)=L</math> and <math>\lim_{x\to c}g(x)=M</math>. Then, | ||
+ | :: <math>\lim_{x\to c}\Big[f(x)+g(x)\Big]=\lim_{x\to c}f(x)+\lim_{x\to c}g(x)=L+M</math>. | ||
+ | |||
+ | Proof: Since we are given that <math>\lim_{x\to c}f(x)=L</math> and <math>\lim_{x\to c}g(x)=M</math> , there must be functions, call them <math>\delta_f(\varepsilon)</math> and <math>\delta_g(\varepsilon)</math> , such that for all <math>\varepsilon>0</math> , <math>\Big|f(x)-L\Big|<\varepsilon</math> whenever <math>|x-c|<\delta_f(\varepsilon)</math> , and <math>\Big|g(x)-M\Big|<\varepsilon</math> whenever <math>|x-c|<\delta_{g}(\varepsilon)</math> .<br/> | ||
+ | Adding the two inequalities gives <math>\Big|f(x)-L\Big|+\big|g(x)-M\big|<2\varepsilon</math> . By the triangle inequality we have <math>\bigg|(f(x)-L)+(g(x)-M)\bigg|=\bigg|(f(x)+g(x))-(L+M)\bigg|\le\Big|f(x)-L\Big|+\Big|g(x)-M\Big|</math> , so we have <math>\bigg|(f(x)+g(x))-(L+M)\bigg|<2\varepsilon</math> whenever <math>|x-c|<\delta_f(\varepsilon)</math> and <math>|x-c|<\delta_{g}(\varepsilon)</math> . Let <math>\delta_{fg}(\varepsilon)</math> be the smaller of <math>\delta_f(\tfrac{\varepsilon}{2})</math> and <math>\delta_g(\tfrac{\varepsilon}{2})</math> . Then this <math>\delta</math> satisfies the definition of a limit for <math>\lim_{x\to c}\Big[f(x)+g(x)\Big]</math> having limit <math>L+M</math> . | ||
+ | |||
+ | ===Difference Rule for Limits=== | ||
+ | : Suppose that <math>\lim_{x\to c}f(x)=L</math> and <math>\lim_{x\to c}g(x)=M</math>. Then | ||
+ | :: <math>\lim_{x\to c}\Big[f(x)-g(x)\Big]=\lim_{x\to c}f(x)-\lim_{x\to c}g(x)=L-M</math> | ||
+ | |||
+ | Proof: Define <math>h(x)=-g(x)</math> . By the Scalar Product Rule for Limits, <math>\lim_{x\to c}h(x)=-M</math> . Then by the Sum Rule for Limits, <math>\lim_{x\to c}\Big[f(x)-g(x)\Big]=\lim_{x\to c}\Big[f(x)+h(x)\Big]=L-M</math>. | ||
+ | |||
+ | ===Product Rule for Limits=== | ||
+ | : Suppose that <math>\lim_{x\to c}f(x)=L</math> and <math>\lim_{x\to c}g(x)=M</math> . Then | ||
+ | :: <math>\lim_{x\to c}\Big[f(x)\cdot g(x)\Big]=\lim_{x\to c}f(x)\cdot\lim_{x\to c}g(x)=L\cdot M</math> | ||
+ | Proof: Let <math>\varepsilon</math> be any positive number. The assumptions imply the existence of the positive numbers <math>\delta_1,\delta_2,\delta_3</math> such that<br/> | ||
+ | :<math>(1)\qquad\Big|f(x)-L\Big|<\frac{\varepsilon}{2(1+|M|)}</math> when <math>0<|x-c|<\delta_1</math> | ||
+ | :<math>(2)\qquad\Big|g(x)-M\Big|<\frac{\varepsilon}{2(1+|L|)}</math> when <math>0<|x-c|<\delta_2</math> | ||
+ | :<math>(3)\qquad\Big|g(x)-M\Big|<1</math> when <math>0<|x-c|<\delta_3</math> | ||
+ | According to the condition (3) we see that | ||
+ | :<math>\Big|g(x)\Big|=\bigg|g(x)-M+M\bigg|\le\Big|g(x)-M\Big|+|M|<1+|M|</math> when <math>0<|x-c|<\delta_3</math> | ||
+ | Supposing then that <math>0<|x-c|<\min\{\delta_1,\delta_2,\delta_3\}</math> and using (1) and (2) we obtain | ||
+ | :<math>\begin{align}\bigg|f(x)g(x)-LM\bigg| | ||
+ | &=\bigg|f(x)g(x)-Lg(x)+Lg(x)-LM\bigg|\\ | ||
+ | &\le\bigg|f(x)g(x)-Lg(x)\bigg|+\bigg|Lg(x)-LM\bigg|\\ | ||
+ | &=\Big|g(x)\Big|\cdot\Big|f(x)-L\Big|+|L|\cdot\Big|g(x)-M\Big|\\ | ||
+ | &<(1+|M|)\frac{\varepsilon}{2(1+|M|)}+(1+|L|)\frac{\varepsilon}{2(1+|L|)}\\ | ||
+ | &=\varepsilon | ||
+ | \end{align}</math> | ||
+ | |||
+ | ===Quotient Rule for Limits=== | ||
+ | : Suppose that <math>\lim_{x\to c}f(x)=L</math> and <math>\lim_{x\to c}g(x)=M</math> and <math>M\ne 0</math>. Then | ||
+ | :: <math>\lim_{x\to c}\frac{f(x)}{g(x)}=\frac{\lim\limits_{x\to c}f(x)}{\lim\limits_{x\to c}g(x)}=\frac{L}{M}</math> | ||
+ | |||
+ | Proof: If we can show that <math>\lim_{x\to c}\frac{1}{g(x)}=\frac{1}{M}</math> , then we can define a function, <math>h(x)</math> as <math>h(x)=\frac{1}{g(x)}</math> and appeal to the Product Rule for Limits to prove the theorem. So we just need to prove that <math>\lim_{x\to c}\frac{1}{g(x)}=\frac{1}{M}</math>. | ||
+ | |||
+ | Let <math>\varepsilon</math> be any positive number. The assumptions imply the existence of the positive numbers <math>\delta_1,\delta_2</math> such that<br/> | ||
+ | :<math>(1)\qquad\Big|g(x)-M\Big|<\frac{\varepsilon|M|^2}{2}</math> when <math>0<|x-c|<\delta_1</math> | ||
+ | :<math>(2)\qquad\Big|g(x)-M\Big|<\frac{|M|}{2}</math> when <math>0<|x-c|<\delta_{2}</math> | ||
+ | According to the condition (2) we see that | ||
+ | :<math>|M|=|M-g(x)+g(x)|\le|M-g(x)|+|g(x)|<\frac{|M|}{2}+|g(x)| </math> so <math> |g(x)|>\frac{|M|}{2} </math> when <math>0<|x-c|<\delta_2</math><br/> | ||
+ | which implies that | ||
+ | :<math>(3)\qquad\left|\frac{1}{g(x)}\right|<\frac{2}{|M|}</math> when <math>0<|x-c|<\delta_2</math><br/> | ||
+ | Supposing then that <math>0<|x-c|<\min\{\delta_1,\delta_2\}</math> and using (1) and (3) we obtain | ||
+ | :<math>\begin{align}\left|\frac{1}{g(x)}-\frac{1}{M}\right|&=\left|\frac{M-g(x)}{Mg(x)}\right|\\ | ||
+ | &=\left|\frac{g(x)-M}{Mg(x)}\right|\\ | ||
+ | &=\left|\frac{1}{g(x)}\right|\cdot\left|\frac{1}{M}\right|\cdot|g(x)-M|\\ | ||
+ | &<\frac{2}{|M|}\cdot\frac{1}{|M|}\cdot|g(x)-M|\\ | ||
+ | &<\frac{2}{|M|}\cdot\frac{1}{|M|}\cdot\frac{\varepsilon|M|^2}{2}\\ | ||
+ | &=\varepsilon | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | ===Squeeze Theorem=== | ||
+ | : Suppose that <math>g(x)\le f(x)\le h(x)</math> holds for all <math>x</math> in some open interval containing <math>c</math> , except possibly at <math>x=c</math> itself. Suppose also that <math>\lim_{x\to c}g(x)=\lim_{x\to c}h(x)=L</math> . Then <math>\lim_{x\to c}f(x)=L</math> also. | ||
+ | |||
+ | Proof: From the assumptions, we know that there exists a <math>\delta</math> such that <math>\Big|g(x)-L\Big|<\varepsilon</math> and <math>\Big|h(x)-L\Big|<\varepsilon</math> when <math>0<|x-c|<\delta</math> .<br/> | ||
+ | These inequalities are equivalent to <math>L-\varepsilon<g(x)<L+\varepsilon</math> and <math>L-\varepsilon<h(x)<L+\varepsilon</math> when <math>0<|x-c|<\delta</math>.<br/> | ||
+ | Using what we know about the relative ordering of <math>f(x),g(x)</math> , and <math>h(x)</math> , we have<br/> | ||
+ | : <math>L-\varepsilon<g(x)\le f(x)\le h(x)<L+\varepsilon</math> when <math>0<|x-c|<\delta</math> .<br/> | ||
+ | Then<br/> | ||
+ | : <math>-\varepsilon<f(x)-L<\varepsilon</math> when <math>0<|x-c|<\delta</math> .<br/> | ||
+ | So<br/> | ||
+ | : <math>\Big|f(x)-L\Big|<\varepsilon</math> when <math>0<|x-c|<\delta</math> . | ||
+ | |||
+ | |||
+ | ==Resources== | ||
* [https://mathresearch.utsa.edu/wikiFiles/MAT1214/The%20Limit%20Laws/MAT1214-2.3TheLimitLawsPwPt.pptx The Limit Laws] PowerPoint file created by Dr. Sara Shirinkam, UTSA. | * [https://mathresearch.utsa.edu/wikiFiles/MAT1214/The%20Limit%20Laws/MAT1214-2.3TheLimitLawsPwPt.pptx The Limit Laws] PowerPoint file created by Dr. Sara Shirinkam, UTSA. | ||
− | * [https://mathresearch.utsa.edu/wikiFiles/MAT1214/The%20Limit%20Laws/MAT1214_2.3TheLimitLawsWS1.pdf The Limit Laws] | + | * [https://mathresearch.utsa.edu/wikiFiles/MAT1214/The%20Limit%20Laws/MAT1214_2.3TheLimitLawsWS1.pdf The Limit Laws Worksheet] |
+ | |||
+ | * [https://youtu.be/P7G7F3NzPw0 Properties of Limits] by The Organic Chemistry Tutor | ||
+ | |||
+ | * [https://youtu.be/v_Nz6UUQ4HQ Limit Laws to Evaluate a Limit , Example 1] by patrickJMT | ||
+ | |||
+ | * [https://youtu.be/3d7qLvgZp0s Limit Laws to Evaluate a Limit , Example 2] by patrickJMT | ||
+ | |||
+ | * [https://youtu.be/KeAgfb3NZLc Limit Laws to Evaluate a Limit , Example 3] by patrickJMT | ||
+ | |||
+ | ==Licensing== | ||
+ | Content obtained and/or adapted from: | ||
+ | * [https://en.wikibooks.org/wiki/Calculus/Proofs_of_Some_Basic_Limit_Rules Proofs of Some Basic Limit Rules, Wikibooks: Calculus] under a CC BY-SA license |
Latest revision as of 17:29, 15 January 2022
Now that we have the formal definition of a limit, we can set about proving some of the properties we stated earlier in this chapter about limits.
Contents
Constant Rule for Limits
- If are constants then .
Proof of the Constant Rule for Limits: We need to find a such that for every , whenever . and , so is satisfied independent of any value of ; that is, we can choose any we like and the condition holds.
Identity Rule for Limits
- If is a constant then .
Proof: To prove that , we need to find a such that for every , whenever . Choosing satisfies this condition.
Scalar Product Rule for Limits
- Suppose that for finite and that is constant. Then .
Proof: Given the limit above, there exists in particular a such that whenever , for some such that . Hence
- .
Sum Rule for Limits
- Suppose that and . Then,
- .
Proof: Since we are given that and , there must be functions, call them and , such that for all , whenever , and whenever .
Adding the two inequalities gives . By the triangle inequality we have , so we have whenever and . Let be the smaller of and . Then this satisfies the definition of a limit for having limit .
Difference Rule for Limits
- Suppose that and . Then
Proof: Define . By the Scalar Product Rule for Limits, . Then by the Sum Rule for Limits, .
Product Rule for Limits
- Suppose that and . Then
Proof: Let be any positive number. The assumptions imply the existence of the positive numbers such that
- when
- when
- when
According to the condition (3) we see that
- when
Supposing then that and using (1) and (2) we obtain
Quotient Rule for Limits
- Suppose that and and . Then
Proof: If we can show that , then we can define a function, as and appeal to the Product Rule for Limits to prove the theorem. So we just need to prove that .
Let be any positive number. The assumptions imply the existence of the positive numbers such that
- when
- when
According to the condition (2) we see that
- so when
which implies that
- when
Supposing then that and using (1) and (3) we obtain
Squeeze Theorem
- Suppose that holds for all in some open interval containing , except possibly at itself. Suppose also that . Then also.
Proof: From the assumptions, we know that there exists a such that and when .
These inequalities are equivalent to and when .
Using what we know about the relative ordering of , and , we have
- when .
Then
- when .
So
- when .
Resources
- The Limit Laws PowerPoint file created by Dr. Sara Shirinkam, UTSA.
- Properties of Limits by The Organic Chemistry Tutor
- Limit Laws to Evaluate a Limit , Example 1 by patrickJMT
- Limit Laws to Evaluate a Limit , Example 2 by patrickJMT
- Limit Laws to Evaluate a Limit , Example 3 by patrickJMT
Licensing
Content obtained and/or adapted from:
- Proofs of Some Basic Limit Rules, Wikibooks: Calculus under a CC BY-SA license