Difference between revisions of "MAT5123"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Up to week 9.)
 
(9 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
== Catalog entry ==
 
MAT 5123. Introduction to Cryptography. (3-0) 3 Credit Hours.
 
MAT 5123. Introduction to Cryptography. (3-0) 3 Credit Hours.
  
 
Prerequisite: MAT 4213. Congruences and residue class rings, Fermat’s Little Theorem, the Euler phi-function, the Chinese Remainder Theorem, complexity, symmetric-key cryptosystems, cyclic groups, primitive roots, discrete logarithms, one-way functions, public-key cryptosystems, digital signatures, finite fields, and elliptic curves. Differential Tuition: $150. Course Fees: GS01 $90.
 
Prerequisite: MAT 4213. Congruences and residue class rings, Fermat’s Little Theorem, the Euler phi-function, the Chinese Remainder Theorem, complexity, symmetric-key cryptosystems, cyclic groups, primitive roots, discrete logarithms, one-way functions, public-key cryptosystems, digital signatures, finite fields, and elliptic curves. Differential Tuition: $150. Course Fees: GS01 $90.
  
Textbook: J. Hoffstein, J. Pipher, J. H. Silverman, ''An Introduction to Mathematical Cryptography'' (2nd Ed.) Springer Undergraduate Mathematics Series, Springer-Verlag (2014). ISBN: 978-1-4939-1711-2.
+
== Textbook ==
 +
J. Hoffstein, J. Pipher, J. H. Silverman, ''An Introduction to Mathematical Cryptography'' (2nd Ed.) Springer Undergraduate Mathematics Series, Springer-Verlag (2014). ISBN: 978-1-4939-1711-2.
  
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
Line 10: Line 12:
 
|1
 
|1
 
||
 
||
1.2 & 1.3
+
1.2, 1.3
 
||
 
||
 
Substitution ciphers and basic theory of divisibility.
 
Substitution ciphers and basic theory of divisibility.
Line 28: Line 30:
 
* Modular arithmetic and shift ciphers.
 
* Modular arithmetic and shift ciphers.
 
* Modular rings and finite fields 𝔽ₚ.
 
* Modular rings and finite fields 𝔽ₚ.
* Powers and primitive roots in finite fields.
+
* Powers and primitive roots in finite fields. Fermat's Little Theorem.
 
* Fast exponentiation.
 
* Fast exponentiation.
 
|-  <!-- START ROW -->
 
|-  <!-- START ROW -->
Line 36: Line 38:
 
1.7, 2.1–2.3.
 
1.7, 2.1–2.3.
 
||  <!-- Topics -->
 
||  <!-- Topics -->
Public and private-key cryptosystems. Cyclic groups. Discrete Logarithms. Diffie-Hellman key exchange.
+
Public and private-key cryptosystems.
 +
 
 +
Cyclic groups.
 +
 
 +
Discrete Logarithms.
 +
 
 +
Diffie-Hellman key exchange.
 
||  <!-- SLOs -->
 
||  <!-- SLOs -->
 
* Symmetric and asymmetric ciphers.
 
* Symmetric and asymmetric ciphers.
Line 50: Line 58:
 
2.4, 2.5. 2.6, 2.7.
 
2.4, 2.5. 2.6, 2.7.
 
||  <!-- Topics -->
 
||  <!-- Topics -->
Elgamal public-key cryptosystem. Cyclic groups. Collision algorithms.
+
Elgamal public-key cryptosystem (EGPKC).
 +
 
 +
Cyclic groups.
 +
 
 +
Collision algorithms.
 
||  <!-- SLOs -->
 
||  <!-- SLOs -->
 
* Theory of finite cyclic groups.
 
* Theory of finite cyclic groups.
Line 61: Line 73:
 
2.8, 2.9, 2.10
 
2.8, 2.9, 2.10
 
||  <!-- Topics -->
 
||  <!-- Topics -->
Rudiments of ring theory. The Chinese Remainder Theorem. The Pohlig-Hellman Algorithm.
+
Rudiments of ring theory.
 +
 
 +
The Chinese Remainder Theorem.
 +
 
 +
The Pohlig-Hellman Algorithm.
 
||  <!-- SLOs -->
 
||  <!-- SLOs -->
 
* Rings. Polynomial rings. Quotient rings.
 
* Rings. Polynomial rings. Quotient rings.
Line 80: Line 96:
 
3.1, 3.2, 3.3.
 
3.1, 3.2, 3.3.
 
||  <!-- Topics -->
 
||  <!-- Topics -->
Modular groups of units. The RSA cryptosystem. Practical considerations of security in implementation.
+
Modular groups of units.
 +
 
 +
The RSA cryptosystem.
 +
 
 +
Practical considerations of security in implementation.
 
||  <!-- SLOs -->
 
||  <!-- SLOs -->
 
* Modular groups 𝑈ₙ.
 
* Modular groups 𝑈ₙ.
 +
* Euler's “totient” function 𝜑. Euler's Theorem.
 
* Powers and roots modulo 𝒑𝒒.
 
* Powers and roots modulo 𝒑𝒒.
 
* The Rivest-Shamir-Adleman (RSA) cryptosystem.
 
* The Rivest-Shamir-Adleman (RSA) cryptosystem.
Line 97: Line 118:
 
* Fermat's Little Theorem and Carmichael numbers.
 
* Fermat's Little Theorem and Carmichael numbers.
 
* The Miller-Rabin probabilistic primality test.
 
* The Miller-Rabin probabilistic primality test.
* Pollard's “𝒑-1” factorization algorithm.
+
* Pollard's “𝒑−𝟣” factorization algorithm.
 
|-  <!-- START ROW -->
 
|-  <!-- START ROW -->
 
| <!-- Week# -->
 
| <!-- Week# -->
Line 113: Line 134:
 
10
 
10
 
|| <!-- Sections -->
 
|| <!-- Sections -->
7.1 & 7.2
+
5.1, 5.3, 5.6, 5.7.
 
||  <!-- Topics -->
 
||  <!-- Topics -->
Cauchy's Integral Formula. Taylor series.
+
Probability, entropy, information theory and complexity.
<!-- Liouville's Theorem. The Fundamental Theorem of Algebra. -->
 
 
||  <!-- SLOs -->
 
||  <!-- SLOs -->
* Statement and proof of Cauchy's Integral Formula.
+
* Rudiments of combinatorics and probability.
* Existence, uniqueness, and general theory of Taylor series of holomorphic functions.
+
* Bayes's Formula.
* Rigorous definition of and proof that complex logarithms are holomorphic.
+
* Random variables and expected values.
 +
* Entropy of a probability distribution.
 +
* Perfect secrecy.
 +
* Complexity theory and 𝒫 versus 𝒩𝒫.
 
|-  <!-- START ROW -->
 
|-  <!-- START ROW -->
 
| <!-- Week# -->
 
| <!-- Week# -->
Line 132: Line 155:
 
12
 
12
 
|| <!-- Sections -->
 
|| <!-- Sections -->
8.1–8.3
+
6.1, 6.2., 6.3
 
||  <!-- Topics -->
 
||  <!-- Topics -->
Isolated singularities and Laurent series. The Residue Theorem.
+
Elliptic curves and discrete logarithms.
 
||  <!-- SLOs -->
 
||  <!-- SLOs -->
* Definition of Laurent series about an isolated singularity. Examples.
+
* Introduction to elliptic curves (ECs).
* Types of isolated singularities: Removable, polar, essential. The Cassorati-Weierstrass Theorem.
+
* Elliptic curves over finite fields.
* Statement and proof of the Residue Theorem.
+
* Fast multiples (“powers”) in ECs. The Double-and-Add algorithm.
* Elementary techniques to evaluate residues.
+
* The Elliptic Curve Discrete Logarithm Problem (ECDLP).
 
|-  <!-- START ROW -->
 
|-  <!-- START ROW -->
 
| <!-- Week# -->
 
| <!-- Week# -->
 
13
 
13
 
|| <!-- Sections -->
 
|| <!-- Sections -->
Chapter 9.
+
6.4, 6.7
 
||  <!-- Topics -->
 
||  <!-- Topics -->
Calculus of residues.
+
Elliptic-Curve Cryptography (ECC).
 +
 
 +
Elliptic curves in characteristic 2.
 
||  <!-- SLOs -->
 
||  <!-- SLOs -->
* Evaluation of integrals of real analytic functions using residues.
+
* EC Diffie-Hellman key exchange.
* Evaluation of series of real analytic functions using residues.
+
* EC Elgamal PKC.
 +
* EC digital signature.
 +
* Definition and construction of finite (Galois) fields 𝐺𝐹(2ⁿ).
 +
* Elliptic curves over 𝐺𝐹(2ⁿ).
 
|-  <!-- START ROW -->
 
|-  <!-- START ROW -->
 
| <!-- Week# -->
 
| <!-- Week# -->
 
14
 
14
 
|| <!-- Sections -->
 
|| <!-- Sections -->
11.1–11.3
+
6.6
 +
 
 +
Atkin-Morain's “ECs and Primality Proving” (Math. Comp. 61 (1993) 29–68.
 +
[https://www.ams.org/journals/mcom/1993-61-203/S0025-5718-1993-1199989-X/])
 
||  <!-- Topics -->
 
||  <!-- Topics -->
Conformal mappings.
+
EC-based primality testing and factorization techniques.
 
||  <!-- SLOs -->
 
||  <!-- SLOs -->
* Preservation of angles and conformal mappings of the plane.
+
* Lenstra's EC factorization algorithm.
* Conformal mappings yield pairs of conjugate harmonic functions.
+
* EC primality certification.
* Dirichlet's Problem on a planar region.
 
* The Riemann Mapping Theorem.
 
* Möbius transformations and their use in solving elementary Dirichlet Problems.
 
 
|-  <!-- START ROW -->
 
|-  <!-- START ROW -->
 
| <!-- Week# -->
 
| <!-- Week# -->
 
15
 
15
 
|| <!-- Sections -->
 
|| <!-- Sections -->
Chapter 10. (At instructor's discretion, week 15 may be used to wrap-up and review instead.)
+
None.
 
||  <!-- Topics -->
 
||  <!-- Topics -->
Complex integration and geometric properties of holomorphic functions 
+
Student Presentations. Wrap-up and review.
 
||  <!-- SLOs -->
 
||  <!-- SLOs -->
* Rouché's Theorem.
 
* The Open Mapping Theorem.
 
* Winding numbers.
 
 
|-
 
|-
 
|}
 
|}

Latest revision as of 22:06, 25 March 2023

Catalog entry

MAT 5123. Introduction to Cryptography. (3-0) 3 Credit Hours.

Prerequisite: MAT 4213. Congruences and residue class rings, Fermat’s Little Theorem, the Euler phi-function, the Chinese Remainder Theorem, complexity, symmetric-key cryptosystems, cyclic groups, primitive roots, discrete logarithms, one-way functions, public-key cryptosystems, digital signatures, finite fields, and elliptic curves. Differential Tuition: $150. Course Fees: GS01 $90.

Textbook

J. Hoffstein, J. Pipher, J. H. Silverman, An Introduction to Mathematical Cryptography (2nd Ed.) Springer Undergraduate Mathematics Series, Springer-Verlag (2014). ISBN: 978-1-4939-1711-2.

Week Sections Topics Student Learning Outcomes
1

1.2, 1.3

Substitution ciphers and basic theory of divisibility.

  • Caesar’s and more general substitution ciphers.
  • Greatest common divisor. The extended Euclidean algorithm.

2

1.4, 1.5.

Modular arithmetic and finite fields.

  • Primes and integer factorizations.
  • The Fundamental Theorem of Arithmetic.
  • Modular arithmetic and shift ciphers.
  • Modular rings and finite fields 𝔽ₚ.
  • Powers and primitive roots in finite fields. Fermat's Little Theorem.
  • Fast exponentiation.

3

1.7, 2.1–2.3.

Public and private-key cryptosystems.

Cyclic groups.

Discrete Logarithms.

Diffie-Hellman key exchange.

  • Symmetric and asymmetric ciphers.
  • Encoding schemes.
  • Perfect secrecy. Vernon’s cipher.
  • Examples of symmetric ciphers.
  • Discrete Logarithms.
  • The Diffie-Hellman key exchange.

4

2.4, 2.5. 2.6, 2.7.

Elgamal public-key cryptosystem (EGPKC).

Cyclic groups.

Collision algorithms.

  • Theory of finite cyclic groups.
  • The Discrete Logarithm Problem (DLP).
  • Shanks’ Babystep-Giantstep DLP algorithm.

5

2.8, 2.9, 2.10

Rudiments of ring theory.

The Chinese Remainder Theorem.

The Pohlig-Hellman Algorithm.

  • Rings. Polynomial rings. Quotient rings.
  • Systems of congruences. The Chinese Remainder Theorem.
  • The Pohlig-Hellman Algorithm.

6

None

Review. First midterm exam.

7

3.1, 3.2, 3.3.

Modular groups of units.

The RSA cryptosystem.

Practical considerations of security in implementation.

  • Modular groups 𝑈ₙ.
  • Euler's “totient” function 𝜑. Euler's Theorem.
  • Powers and roots modulo 𝒑𝒒.
  • The Rivest-Shamir-Adleman (RSA) cryptosystem.
  • Implementation and security issues of cryptosystems: Kerchoff's Principle, Known- and Chosen-Plaintext attacks, Man-in-the-Middle attacks, obfuscation (Random-Oracle) attacks, parameter reuse.

8

3.4, 3.5.

Primality testing and factorization attacks on RSA.

  • Distribution of primes. The Prime Number Theorem.
  • Fermat's Little Theorem and Carmichael numbers.
  • The Miller-Rabin probabilistic primality test.
  • Pollard's “𝒑−𝟣” factorization algorithm.

9

4.1, 4.2, 4.3

Digital Signatures.

  • Definition and uses of digital signatures.
  • RSA digital signatures.
  • Elgamal digital signatures and DSA.

10

5.1, 5.3, 5.6, 5.7.

Probability, entropy, information theory and complexity.

  • Rudiments of combinatorics and probability.
  • Bayes's Formula.
  • Random variables and expected values.
  • Entropy of a probability distribution.
  • Perfect secrecy.
  • Complexity theory and 𝒫 versus 𝒩𝒫.

11

None

Review. Second midterm exam.

12

6.1, 6.2., 6.3

Elliptic curves and discrete logarithms.

  • Introduction to elliptic curves (ECs).
  • Elliptic curves over finite fields.
  • Fast multiples (“powers”) in ECs. The Double-and-Add algorithm.
  • The Elliptic Curve Discrete Logarithm Problem (ECDLP).

13

6.4, 6.7

Elliptic-Curve Cryptography (ECC).

Elliptic curves in characteristic 2.

  • EC Diffie-Hellman key exchange.
  • EC Elgamal PKC.
  • EC digital signature.
  • Definition and construction of finite (Galois) fields 𝐺𝐹(2ⁿ).
  • Elliptic curves over 𝐺𝐹(2ⁿ).

14

6.6

Atkin-Morain's “ECs and Primality Proving” (Math. Comp. 61 (1993) 29–68. [1])

EC-based primality testing and factorization techniques.

  • Lenstra's EC factorization algorithm.
  • EC primality certification.

15

None.

Student Presentations. Wrap-up and review.