Difference between revisions of "MAT3233"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(New catalog entry.)
(Typo)
 
(20 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Modern Algebra==
 
==Modern Algebra==
  
MAT 3233 Modern Algebra. (3-0) 3 Credit Hours.
+
[https://catalog.utsa.edu/undergraduate/sciences/mathematics/#courseinventory MAT 3233 Modern Algebra]. (3-0) 3 Credit Hours.
  
 
Prerequisites: [[MAT2233]] and [[MAT3003]].
 
Prerequisites: [[MAT2233]] and [[MAT3003]].
  
Introductory theory of groups, rings, and fields:  Basic examples of groups. Cyclic groups. Permutation groups and cycle decompositions. Group homomorphisms. Normal subgroups, factor groups, and direct products of groups. Definitions and basic examples of rings, integral domains and fields. Ring homomorphisms. Ideals, factor rings, and direct products of rings. Unique factorization of integers and polynomials. Generally offered: Fall, Spring, Summer. Differential Tuition: $150.
+
<!-- An introduction to modern algebra building up from concrete examples in elementary algebra and number theory which lead to the abstract theory of groups, rings, and fields. Topics include:  Basic examples of groups. Cyclic groups. Permutation groups and cycle decompositions. Group homomorphisms. Normal subgroups, factor groups, and direct products of groups. Definitions and basic examples of rings, integral domains and fields. Ring homomorphisms. Ideals, factor rings, and direct products of rings. Unique factorization of integers and polynomials. Generally offered: Fall, Spring, Summer. Differential Tuition: $150. -->
  
 +
An introduction to modern algebra building up from concrete examples in elementary algebra and number theory which lead to the abstract theory of groups, rings, and fields. Topics include: Arithmetic congruences in the ring ℤ of integers; residue rings ℤₙ; finite fields 𝔽ₚ; the group of units 𝑈ₙ; cyclic groups; the Chinese Remainder, Fermat’s and Euler’s theorems; polynomial rings; the Fundamental Theorem of Algebra; irreducible polynomials and factorization in 𝔽[x] and ℤ[𝑥]; quotient rings and construction of the Galois fields 𝐺𝐹(𝑝ⁿ).
 +
 +
<!-- Basic examples of groups. Cyclic groups. Permutation groups and cycle decompositions. Group homomorphisms. Normal subgroups, factor groups, and direct products of groups. Definitions and basic examples of rings, integral domains and fields. Ring homomorphisms. Ideals, factor rings, and direct products of rings. Unique factorization of integers and polynomials. Generally offered: Fall, Spring, Summer. Differential Tuition: $150. -->
 +
 +
==Textbook==
 +
Lindsay N. Childs, [https://utsa.primo.exlibrisgroup.com/permalink/01UTXSANT_INST/1du13se/cdi_springer_books_10_1007_978_0_387_74725_5 ''A Concrete Introduction to Higher Algebra''] (3rd. ed.) Springer-Verlag (2009). ISBN: 978-0-387-74527-5
 +
 +
==Topics==
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
! Date !! Sections !! Topics !! Prerequisite Skills !! Student learning outcomes
+
! Week !! Chapters !! Topics !! Student learning outcomes
 
|-
 
|-
| Example || Chapter 1 || [[Modern Algebra: Preliminaries|Preliminaries]] || Example || Example
+
|
 +
1
 +
||
 +
1–2
 +
||
 +
Integers. Inductive proofs.
 +
||
 +
 
 
|-
 
|-
| Example || Chapter 2 || [[The Integers]] || Example || Example
+
|
 +
2
 +
||
 +
3–4
 +
||
 +
Divisibility. The Euclidean Algorithm. Unique factorization of integers.
 +
||
 +
 
 
|-
 
|-
| Example || Chapter 3 || [[Groups]] || Example || Example
+
|
 +
3
 +
||
 +
5–6
 +
||
 +
Congruences and congruence classes. Modular rings ℤₙ.
 +
||
 +
 
 
|-
 
|-
| Example || Chapter 4 || [[Cyclic Groups]] || Example || Example
+
|
 +
4
 +
||
 +
7 & 9
 +
||
 +
Rings and fields. Theorems of Fermat and Euler.
 +
||
 +
 
 
|-
 
|-
| Example || Chapter 5 || [[Permutation Groups]] || Example || Example
+
|
 +
5
 +
||
 +
11–12
 +
||
 +
Groups. The Chinese Remainder Theorem.
 +
||
 +
 
 
|-
 
|-
| Example || Chapter 6 || [[Cosets and Lagrange’s Theorem]] || Example || Example
+
|
 +
6
 +
||
 +
---
 +
||
 +
Review. First midterm exam.
 +
||
 +
 
 
|-
 
|-
| Example || Chapter 9 || [[Isomorphisms]] || Example || Example
+
|
 +
7
 +
||
 +
13–14
 +
||
 +
Polynomials: division and factorization.
 +
Divisibility and the Euclidean Algorithm.
 +
||
 +
 
 
|-
 
|-
| Example || Chapter 10 || [[Normal Subgroups and Factor Groups]] || Example || Example
+
|
 +
8
 +
||
 +
15 & 17
 +
||
 +
The Fundamental Theorem of Algebra.
 +
Polynomial congruences. The Chinese Remainder Theorem in 𝔽[𝑥].
 +
||
 +
 
 
|-
 
|-
| Example || Chapter 11 || [[Homomorphisms]] || Example || Example
+
|
 +
9
 +
||
 +
19-20
 +
||
 +
Primitive roots and cyclic groups.
 +
Carmichael numbers.
 +
||
 +
 
 +
|-
 +
|
 +
10
 +
||
 +
---
 +
||
 +
Review. Second midterm exam.
 +
||
 +
 
 +
|-
 +
|
 +
11
 +
||
 +
21
 +
||
 +
Quadratic Reciprocity
 +
||
 +
 
 
|-
 
|-
| Example || Chapter 13 || [[The Structure of Groups]] || Example || Example
+
|
 +
12
 +
||
 +
23
 +
||
 +
Polynomial congruences and quotients of 𝔽[𝑥].
 +
||
 +
 
 
|-
 
|-
| Example || Chapter 16 || [[Rings]] || Example || Example
+
|
 +
13
 +
||
 +
24
 +
||
 +
Homomorphisms. Finite fields.
 +
||
 +
 
 
|-
 
|-
| Example || Chapter 17 || [[Polynomials]] || Example || Example
+
|
 +
14
 +
||
 +
26
 +
||
 +
Factorization in ℤ[𝑥]. Irreducible polynomials.
 +
||
 +
 
 +
|-
 +
|
 +
15
 +
||
 +
---
 +
||
 +
Wrap-up and review. Student Study Day.
 +
||
 +
 
 
|-
 
|-
| Example || Chapter 18 || [[Integral Domains]] || Example || Example
 
 
|}
 
|}

Latest revision as of 10:56, 25 March 2023

Modern Algebra

MAT 3233 Modern Algebra. (3-0) 3 Credit Hours.

Prerequisites: MAT2233 and MAT3003.


An introduction to modern algebra building up from concrete examples in elementary algebra and number theory which lead to the abstract theory of groups, rings, and fields. Topics include: Arithmetic congruences in the ring ℤ of integers; residue rings ℤₙ; finite fields 𝔽ₚ; the group of units 𝑈ₙ; cyclic groups; the Chinese Remainder, Fermat’s and Euler’s theorems; polynomial rings; the Fundamental Theorem of Algebra; irreducible polynomials and factorization in 𝔽[x] and ℤ[𝑥]; quotient rings and construction of the Galois fields 𝐺𝐹(𝑝ⁿ).


Textbook

Lindsay N. Childs, A Concrete Introduction to Higher Algebra (3rd. ed.) Springer-Verlag (2009). ISBN: 978-0-387-74527-5

Topics

Week Chapters Topics Student learning outcomes

1

1–2

Integers. Inductive proofs.

2

3–4

Divisibility. The Euclidean Algorithm. Unique factorization of integers.

3

5–6

Congruences and congruence classes. Modular rings ℤₙ.

4

7 & 9

Rings and fields. Theorems of Fermat and Euler.

5

11–12

Groups. The Chinese Remainder Theorem.

6

---

Review. First midterm exam.

7

13–14

Polynomials: division and factorization. Divisibility and the Euclidean Algorithm.

8

15 & 17

The Fundamental Theorem of Algebra. Polynomial congruences. The Chinese Remainder Theorem in 𝔽[𝑥].

9

19-20

Primitive roots and cyclic groups. Carmichael numbers.

10

---

Review. Second midterm exam.

11

21

Quadratic Reciprocity

12

23

Polynomial congruences and quotients of 𝔽[𝑥].

13

24

Homomorphisms. Finite fields.

14

26

Factorization in ℤ[𝑥]. Irreducible polynomials.

15

---

Wrap-up and review. Student Study Day.