Difference between revisions of "Lagrange Multipliers"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
+
The method of Lagrange multipliers solves the constrained optimization problem by transforming it into a non-constrained optimization problem of the form:
 +
* <math>\operatorname{\mathcal{L}}(x_1,x_2,\ldots, x_n,\lambda)= \operatorname{f}(x_1,x_2,\ldots, x_n)+\operatorname{\lambda}(k-g(x_1,x_2,\ldots, x_n))</math>
 +
Then finding the gradient and Hessian as was done above will determine any optimum values of <math>\operatorname{\mathcal{L}}(x_1,x_2,\ldots, x_n,\lambda)</math>.
 +
 
 +
Suppose we now want to find optimum values for <math>f(x,y)=2x^2+y^2</math> subject to <math>x+y=1</math> from [2].
 +
 
 +
Then the Lagrangian method will result in a non-constrained function.
 +
* <math>\operatorname{\mathcal{L}}(x,y,\lambda)= 2x^2+y^2+\lambda (1-x-y)</math>
 +
 
 +
The gradient for this new function is
 +
* <math>\frac{\partial \mathcal{L}}{\partial x}(x,y,\lambda)= 4x+\lambda (-1)=0</math>
 +
* <math>\frac{\partial \mathcal{L}}{\partial y}(x,y,\lambda)= 2y+\lambda (-1)=0</math>
 +
* <math>\frac{\partial \mathcal{L}}{\partial \lambda}(x,y,\lambda)=1-x-y=0</math>
 +
 
 +
Finding the stationary points of the above equations can be obtained from their matrix from.
 +
 
 +
: <math> \begin{bmatrix}
 +
4 & 0 & -1 \\
 +
0& 2 & -1 \\
 +
-1 & -1 & 0
 +
\end{bmatrix} \begin{bmatrix}
 +
x\\
 +
y \\
 +
\lambda \end{bmatrix}= \begin{bmatrix}
 +
0\\
 +
0\\
 +
-1
 +
\end{bmatrix}
 +
</math>
 +
 
 +
This results in <math>x=1/3, y=2/3, \lambda=4/3</math>.
 +
 
 +
Next we can use the Hessian as before to determine the type of this stationary point.
 +
 
 +
: <math> H(\mathcal{L})=
 +
\begin{bmatrix}
 +
4 & 0 & -1 \\
 +
0& 2 & -1 \\
 +
-1&-1&0
 +
\end{bmatrix}
 +
</math>
 +
 
 +
Since <math> H(\mathcal{L}) >0 </math> then the solution <math>(1/3,2/3,4/3)</math> minimizes <math>f(x,y)=2x^2+y^2</math> subject to <math>x+y=1</math> with <math>f(x,y)=2/3</math>.
 +
 
 +
 
 +
==Resources==
 +
* [https://en.wikibooks.org/wiki/Calculus_Optimization_Methods/Lagrange_Multipliers Lagrange Multipliers], WikiBooks: Calculus Optimization Methods
 +
 
 +
===Videos===
 
*[https://www.youtube.com/watch?v=ry9cgNx1QV8&list=RDCMUCFe6jenM1Bc54qtBsIJGRZQ&index=5 LaGrange Multipliers - Finding Maximum or Minimum Values ]Video by patrickJMT
 
*[https://www.youtube.com/watch?v=ry9cgNx1QV8&list=RDCMUCFe6jenM1Bc54qtBsIJGRZQ&index=5 LaGrange Multipliers - Finding Maximum or Minimum Values ]Video by patrickJMT
  
Line 9: Line 57:
  
 
*[https://www.youtube.com/watch?v=nDuS5uQ7-lo Lagrange multipliers (3 variables) | MIT 18.02SC Multivariable Calculus, Fall 2010] Video by MIT OpenCourseWare
 
*[https://www.youtube.com/watch?v=nDuS5uQ7-lo Lagrange multipliers (3 variables) | MIT 18.02SC Multivariable Calculus, Fall 2010] Video by MIT OpenCourseWare
 +
 +
==Licensing==
 +
Content obtained and/or adapted from:
 +
* [https://en.wikibooks.org/wiki/Calculus_Optimization_Methods/Lagrange_Multipliers Lagrange Multipliers, WikiBooks: Calculus Optimization Methods] under a CC BY-SA license

Latest revision as of 15:52, 2 November 2021

The method of Lagrange multipliers solves the constrained optimization problem by transforming it into a non-constrained optimization problem of the form:

Then finding the gradient and Hessian as was done above will determine any optimum values of .

Suppose we now want to find optimum values for subject to from [2].

Then the Lagrangian method will result in a non-constrained function.

The gradient for this new function is

Finding the stationary points of the above equations can be obtained from their matrix from.

This results in .

Next we can use the Hessian as before to determine the type of this stationary point.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H(\mathcal{L})= \begin{bmatrix} 4 & 0 & -1 \\ 0& 2 & -1 \\ -1&-1&0 \end{bmatrix} }

Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H(\mathcal{L}) >0 } then the solution Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1/3,2/3,4/3)} minimizes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y)=2x^2+y^2} subject to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x+y=1} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y)=2/3} .


Resources

Videos

Licensing

Content obtained and/or adapted from: