Difference between revisions of "MAT1073"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
m (Removed the prereqs of Zeros of Polynomials Graphs of Polynomials from More on Polynomial Functions and Rational Functions)
m (Added Module number to each prereq topic)
Line 309: Line 309:
 
* [[GraphsOfPolynomials|Graphs of Polynomials]]
 
* [[GraphsOfPolynomials|Graphs of Polynomials]]
 
||
 
||
* Basic understanding of [[Graphs|Graphs]]
+
* Basic understanding of [[Graphs|Graphs]] (Module R)
* Basic understanding of [[IntroToPolynomialFunctions|Polynomial Functions]]
+
* Basic understanding of [[IntroToPolynomialFunctions|Polynomial Functions]] (Module 2.1)
 
||
 
||
 
* Recognize characteristics of graphs of polynomial functions
 
* Recognize characteristics of graphs of polynomial functions
Line 325: Line 325:
 
* [[GraphsOfRationalFunctions|Graphs of Rational Functions]]
 
* [[GraphsOfRationalFunctions|Graphs of Rational Functions]]
 
||
 
||
* Basic understanding of [[Graphs|Graphs]]
+
* Basic understanding of [[Graphs|Graphs]] (Module R)
* Basic understanding of [[RationalFunctions|Rational Functions]]
+
* Basic understanding of [[RationalFunctions|Rational Functions]] (Module 4.1)
 
||
 
||
 
* Identify and graph vertical asymptotes
 
* Identify and graph vertical asymptotes
Line 339: Line 339:
 
* [[TransformationsOfFunctions|Transformations of Functions]]
 
* [[TransformationsOfFunctions|Transformations of Functions]]
 
||
 
||
* Understanding of [[Functions|Functions]]
+
* Understanding of [[Functions|Functions]] (Module R)
* Understanding of [[FunctionNotation|Function Notation]]
+
* Understanding of [[FunctionNotation|Function Notation]] (Module R)
 
||
 
||
 
* Graph functions using vertical and horizontal shifts
 
* Graph functions using vertical and horizontal shifts
Line 354: Line 354:
 
* [[CompositionOfFunctions|Composition of Functions]]
 
* [[CompositionOfFunctions|Composition of Functions]]
 
||
 
||
* Understanding of [[FunctionNotation|Function Notation]]
+
* Understanding of [[FunctionNotation|Function Notation]] (Module R)
* Understanding of [[Functions|Functions]]
+
* Understanding of [[Functions|Functions]] (Module R)
 
||
 
||
 
* Combine functions using algebraic operations
 
* Combine functions using algebraic operations
Line 369: Line 369:
 
* [[InverseFunctions|Inverse Functions]]
 
* [[InverseFunctions|Inverse Functions]]
 
||
 
||
* Understanding of [[FunctionNotation|Function Notation]]
+
* Understanding of [[FunctionNotation|Function Notation]] (Module R)
* Understanding of [[Functions|Functions]]
+
* Understanding of [[Functions|Functions]] (Module R)
* Understanding of [[CompositionOfFunctions|Composition of Functions]]
+
* Understanding of [[CompositionOfFunctions|Composition of Functions]] (Module 7.1)
 
||
 
||
 
* Verify inverse functions
 
* Verify inverse functions
Line 386: Line 386:
 
* Understanding the [[ToolkitFunctions|Toolkit Functions]] for exponential functions (Module 1)
 
* Understanding the [[ToolkitFunctions|Toolkit Functions]] for exponential functions (Module 1)
 
* Understanding the [[Domain|Domain]] and [[Range|Range]] for exponential functions (Module 1)
 
* Understanding the [[Domain|Domain]] and [[Range|Range]] for exponential functions (Module 1)
 +
* Understanding of [[SimplifyingExponents|Simplifying Exponents]] (Module R)
 
||
 
||
 
* Evaluate exponential functions.
 
* Evaluate exponential functions.
Line 400: Line 401:
 
* Understanding the [[ToolkitFunctions|Toolkit Functions]] for logarithmic functions
 
* Understanding the [[ToolkitFunctions|Toolkit Functions]] for logarithmic functions
 
* Understanding the [[Domain|Domain]] and [[Range|Range]] for logarithmic functions (Module 1)
 
* Understanding the [[Domain|Domain]] and [[Range|Range]] for logarithmic functions (Module 1)
* [[ExponentialFunctions|Exponential Functions]]
+
* Difference between [[LinearEquations|Linear]] and [[ExponentialFunctions|Exponential Functions]] (Module R & 8.1)
* Difference between [[LinearEquations|Linear]] and [[ExponentialFunctions|Exponential Functions]]
 
 
||
 
||
 
* Rewriting from exponential form to logarithmic form and vice versa  
 
* Rewriting from exponential form to logarithmic form and vice versa  
Line 415: Line 415:
 
* [[LogarithmicProperties|Logarithmic Properties]]
 
* [[LogarithmicProperties|Logarithmic Properties]]
 
||
 
||
* Understanding how to convert between [[LogarithmicFunctions|logarithm]] and [[ExponentialFunctions|exponential]] forms and having a firm grasp on how they work together
+
* Understanding how to convert between [[LogarithmicFunctions|logarithm]] and [[ExponentialFunctions|exponential]] forms. (Module 8.1 & 8.2)
* Understanding [[OrderOfOperations|Order of Operations]]
+
* Understanding [[OrderOfOperations|Order of Operations]]. (Module R)
* Understanding of Exponential Rules and Exponents in general
+
* Understanding of Exponential Rules. (Module R))
 
||
 
||
 
* Use the product rule for logarithms.
 
* Use the product rule for logarithms.
Line 432: Line 432:
 
* [[ExponentialEquations|Exponential Equations]]  
 
* [[ExponentialEquations|Exponential Equations]]  
 
||
 
||
* Understanding rules for solving [[LinearEquations|Linear Equations]]
+
* Understanding rules for solving [[LinearEquations|Linear Equations]] (Module R)
* Understanding rules for solving [[QuadraticFunctions|Quadratic Equations]]
+
* Understanding how to check a solution to an [[SolvingEquations|equations]] (Module R)
* Understanding how to check a solution to an [[SolvingEquations|equations]]
+
* Understanding rules for solving [[QuadraticFunctions|Quadratic Equations]] (Module 2.1)
* Understanding of [[LogarithmicProperties|Logarithmic Properties]]
+
* Understanding of [[LogarithmicProperties|Logarithmic Properties]] (Module 9.1)
 
||
 
||
 
* Use like bases to solve exponential equations.
 
* Use like bases to solve exponential equations.
Line 446: Line 446:
 
* [[LogarithmicEquations|Logarithmic Equations]]
 
* [[LogarithmicEquations|Logarithmic Equations]]
 
||
 
||
* Understanding rules for solving [[LinearEquations|Linear Equations]]
+
* Understanding rules for solving [[LinearEquations|Linear Equations]] (Module R)
* Understanding rules for solving [[QuadraticFunctions|Quadratic Equations]]
+
* Understanding how to check a solution to an [[SolvingEquations|equations]] (Module R)
* Understanding how to check a solution to an [[SolvingEquations|equations]]
+
* Understanding rules for solving [[QuadraticFunctions|Quadratic Equations]] (Module 2.1)
* Understanding of [[LogarithmicProperties|Logarithmic Properties]]
+
* Understanding of [[LogarithmicProperties|Logarithmic Properties]] (Module 9.1)
 
||
 
||
 
* Use the definition of a logarithm to solve logarithmic equations.
 
* Use the definition of a logarithm to solve logarithmic equations.
Line 461: Line 461:
 
* [[ExponentialModels|Exponential]]
 
* [[ExponentialModels|Exponential]]
 
||
 
||
* Understanding of [[SimplifyingExponents|Simplifying Exponents]]
+
* Understanding of [[SimplifyingExponents|Simplifying Exponents]] (Module R)
* Understanding of [[ExponentialFunctions|Exponential Functions]]
+
* Understanding of [[ExponentialFunctions|Exponential Functions]] (Module 8.1)
* Understanding of [[ExponentialEquations|Exponential Equations]]  
+
* Understanding of [[ExponentialEquations|Exponential Equations]] (Module 9.2)
 
||
 
||
 
* Model exponential growth and decay
 
* Model exponential growth and decay
Line 476: Line 476:
 
* [[LogarithmicModels|Logarithmic Models]]
 
* [[LogarithmicModels|Logarithmic Models]]
 
||
 
||
* Understanding of [[LogarithmicProperties|Logarithmic Properties]]
+
* Understanding of [[LogarithmicFunctions|Logarithmic Functions]] (Module 8.2)
* Understanding of [[LogarithmicEquations|Logarithmic Equations]]
+
* Understanding of [[LogarithmicProperties|Logarithmic Properties]] (Module 9.1)
* Understanding of [[LogarithmicFunctions|Logarithmic Functions]]
+
* Understanding of [[LogarithmicEquations|Logarithmic Equations]] (Module 9.2)
 
||
 
||
 
* Use logistic-growth models
 
* Use logistic-growth models
Line 489: Line 489:
 
* [[ModelingUsingVariation|Modeling using Variation]]
 
* [[ModelingUsingVariation|Modeling using Variation]]
 
||
 
||
* Understanding of [[LogarithmicModels|Logarithmic Models]]
+
* Understanding of [[SimplifyingExponents|Simplifying Exponents]] (Module R)
* Understanding of [[ExponentialModels|Exponential]]
+
* Understanding of [[ExponentialFunctions|Exponential Functions]] (Module 8.1)
* Understanding of [[SimplifyingExponents|Simplifying Exponents]]
+
* Understanding of [[LogarithmicFunctions|Logarithmic Functions]] (Module 8.2)
* Understanding of [[ExponentialEquations|Exponential Equations]]  
+
* Understanding of [[LogarithmicProperties|Logarithmic Properties]] (Module 9.1)
* Understanding of [[LogarithmicProperties|Logarithmic Properties]]
+
* Understanding of [[ExponentialEquations|Exponential Equations]] (Module 9.2)
* Understanding of [[LogarithmicEquations|Logarithmic Equations]]
+
* Understanding of [[LogarithmicEquations|Logarithmic Equations]] (Module 9.2)
 +
* Understanding of [[ExponentialModels|Exponential]] (Module 10)
 +
* Understanding of [[LogarithmicModels|Logarithmic Models]] (Module 10)
 
||
 
||
 
* Solve direct variation problems
 
* Solve direct variation problems
Line 506: Line 508:
 
* [[SystemsOfEquationsInTwoVariables|Systems of Equations in Two Variables]]
 
* [[SystemsOfEquationsInTwoVariables|Systems of Equations in Two Variables]]
 
||
 
||
* Solving [[LinearEquations|linear equations]] in 2 variables.
+
* Solving and Graphing [[LinearEquations|linear equations]] in 2 variables. (Module R)
* Graphing [[LinearEquations|linear equations]] in 2 variables.
 
 
* Understanding [[OrderOfOperations|Order of Operations]] (Module R)
 
* Understanding [[OrderOfOperations|Order of Operations]] (Module R)
 
||
 
||

Revision as of 08:07, 23 June 2020

Topics List

Date Sections Topics Prerequisite Skills Student Learning Outcomes
Week 1

Module R

  • Basic mathematical symbols and terminology
  • Basic arithmetic skills
  • Basic understanding of order of operations

Review of:

  • PEMDAS
Week 1

Module R

  • Basic mathematical symbols and terminology
  • Basic understanding of Order of Operations
  • Basic understanding of exponents and radicals
  • Basic understanding of factoring polynomials and definition of a factor
  • Understanding operations with fractions

Review the following radical expression concepts:

  • evaluate square roots
  • use the product rule to simplify square roots
  • use the quotient rule to simplify square roots
  • add and subtract square roots
Week 1

Module R

  • Basic mathematical symbols and terminology
  • Basic arithmetic skills
  • Basic understanding of Order of Operations
  • Basic understanding of exponents

Review the following rules of exponents:

  • product rule
  • quotient rule
  • power rule
  • zero exponent rule
  • negative rule

Review how to find the power of a product and a quotient Review how to simplify exponential expressions

Week 1

Module R

  • Basic mathematical symbols and terminology
  • Basic arithmetic skills
  • Basic understanding of Order of Operations
  • Basic prime factorization
  • Basic understanding of factoring

Review factoring techniques for the following type of polynomials:

  • factor the greatest common factor of a polynomial
  • factor a trinomial
  • factor by grouping
  • factor a perfect square trinomial
  • factor a difference of squares
Week 1

Module R

  • Basic mathematical symbols and terminology
  • Basic arithmetic skills
  • Basic understanding of Order of Operations
  • Basic understanding of factoring

Review the following linear equation topics:

  • Basic mathematical symbols and terminology
  • solving linear equations in one variable
  • finding a linear equation
  • write and interpret a linear equation
Week 1

Module R

  • Basic mathematical symbols and terminology
  • Basic arithmetic skills
  • Basic understanding of Order of Operations
  • Basic understanding of factoring

Review the following linear inequality topics:

  • use interval notation
  • use properties of inequalities
  • solve inequalities in one variable algebraically
Week 1

Module R

  • Basic mathematical symbols and terminology
  • Basic arithmetic skills
  • Basic understanding of Order of Operations
  • Basic understanding of factoring
  • Basic understanding of Solving Equations
Week 1

Module R

  • Basic mathematical symbols and terminology
  • Basic arithmetic skills
  • Basic understanding of order of operations
  • Basic understanding of factoring
  • Basic understanding of solving Linear Equations
  • Understanding of the Cartesian coordinate system
Week 2

Module 1.1

  • Determine whether a relation represents a function.
Week 2

Module 1.1

  • Find the value of a Functions
  • Graph the functions listed in the library of functions.
  • Determine whether a function is one-to-one.
  • Use the vertical line test to identify functions.
Week 2

Module 1.2

  • Basic understanding of interval notation (Module R: Inequalities)
  • Find the domain of a function defined by an equation.
  • Graph piecewise-defined functions.
Week 2

Module 1.2

  • Basic understanding of interval notation (Module R: Inequalities)
  • Find the domain of a function defined by an equation.
  • Graph piecewise-defined functions.
Week 2

Module 1.2

  • Basic understanding of Cartesian coordinate system (Module R: Graphs)
  • Basic understanding of interval notation (Module R: Inequalities)
  • Identify the basic toolkit functions
  • Determine Domain and Range for the basic toolkit functions (Module 1.2)
  • Graph the basic toolkit functions. (Module R)
Week 3

Module 2.1

  • Basic understanding of power expressions.
  • The student recalls the Graphs and equations of Toolkit Functions, and their associated Domains and Ranges (Module 1).
  • The student understands where the x-intercept and y-intercept are located given a graph.
  • The student understands interval notation for Domain and Range (Module 1).
  • The student can substitute values for variables in an Equations and solve for an unknown (Module R)
  • Identify power functions.
  • Identify end behavior of power functions.
  • Identify polynomial functions.
  • Identify the degree and leading coefficients of polynomial functions.
Week 3

Module 2.1

  • Basic understanding of a polynomial expression.
  • The student recalls the Graphs and equations of Toolkit Functions, and their associated domains and ranges (Module 1).
  • The student understands where the x-intercept and y-intercept are located given a graph.
  • The student understands interval notation for Domain and Range (Module 1).
  • The student can substitute values for variables in an Equations and solve for an unknown (Module R).
  • Identify polynomial functions.
  • Identify the degree and leading coefficients of polynomial functions.
Week 3

Module 2.2

  • Fundamentals of Polynomials (Module 2.1)
  • The student understands the difference between a maximum and minimum.
  • Recognize characteristics of parabolas
  • Understand how the graph of a parabola is related to its quadratic function
  • Determine a quadratic function's minimum or maximum value
  • Solve problems involving a quadratic function's minimum or maximum value
Week 4

Module 3.1

  • Basic understanding of multiplying and dividing fractions.
  • Basic understanding of simplifying fractions by common factors.
  • Basic understanding of the rules of exponents. (Module R: Simplifying Exponents)
  • Basic understanding of Factoring Polynomials (Module R)
  • Use long division to divide polynomials
  • Use synthetic division to divide polynomials
Week 4

Module 3.2

  • Basic understanding of multiplying and dividing fractions.
  • Basic understanding of simplifying fractions by common factors.
  • Basic understanding of Factoring Polynomials (Module R)
  • Basic understanding of Functions (Module 1.1)
  • Basic understanding of Solving Equations (Module R)
  • Evaluate a polynomial using the Remainder Theorem
  • Use the Factor Theorem to solve a polynomial equation
  • Use the Rational Zero Theorem to find rational zeros
  • Find zeros of a polynomial function
  • Solve real-world applications of polynomial equations
Week 5

Module 4.1

  • The student understands that zero in the denominator of a fraction is undefined.
  • The student recalls the Graphs and equations of Toolkit Functions, and their associated Domains and Ranges (Module 1.2 & R).
Week 5

Module 4.2

  • Solving applied problems involving Polynomial Functions. (Module 2.1)
  • Use arrow notation.
  • Solve applied problems involving rational functions.
  • Find the Domain of rational functions.
  • Identify vertical asymptotes.
  • Identify horizontal asymptotes.
Week 6

Module 5.1

  • Recognize characteristics of graphs of polynomial functions
  • Use factoring to find zeros of polynomial functions
  • Identify zeros and their multiplicities
  • Determine end behavior
  • Understand the relationship between degree and turning points
  • Graph polynomial functions
Week 6

Module 5.2

  • Identify and graph vertical asymptotes
  • Identify and graph horizontal asymptotes
  • Determine behavior of rational functions around vertical asymptotes
  • Graph rational functions
Week 7

Module 6

  • Graph functions using vertical and horizontal shifts
  • Graph functions using reflections about the x-axis and the y-axis
  • Determine whether a function is even, odd, or neither from it's graph
  • Graph functions using compressions and stretches
  • Combine transformations
Week 8

Module 7.1

  • Combine functions using algebraic operations
  • Create a new function by composition of functions
  • Evaluate composite functions
  • Find the domain of a composite function
  • Decompose a composite function into its component functions
Week 8

Module 7.2

  • Verify inverse functions
  • Determine the domain and range of an inverse function, and restrict the domain of a function to make it one-to-one
  • Find or evaluate the inverse of a function
  • Use the graph of a one-to-one function to graph its inverse function on the same axes
Week 9

Module 8.1

  • Evaluate exponential functions.
  • Find the equation of an exponential function.
  • Use compound interest formulas.
  • Evaluate exponential functions with base e.
Week 9

Module 8.2

  • Rewriting from exponential form to logarithmic form and vice versa
-y=b^x\equiv\log_b(y)=x
  • Evaluate logarithms.
  • Use common logarithms.
  • Use natural logarithms.
Week 10

Module 9.1

  • Use the product rule for logarithms.
  • Use the quotient rule for logarithms.
  • Use the power rule for logarithms.
  • Expand logarithmic expressions.
  • Condense logarithmic expressions.
  • Use the change-of-base formula for logarithms.
Week 10

Module 9.2

  • Use like bases to solve exponential equations.
  • Use logarithms to solve exponential equations.
Week 10

Module 9.2

  • Use the definition of a logarithm to solve logarithmic equations.
  • Use the one-to-one property of logarithms to solve logarithmic equations.
  • Solve applied problems involving exponential and logarithmic equations.
Week 11

Module 10

  • Model exponential growth and decay
  • Use Newton's Law of Cooling
  • Choose an appropriate model for data
  • Express an exponential model in base e
Week 11

Module 10

  • Use logistic-growth models
  • Choose an appropriate model for data
Week 12

Module 11

  • Solve direct variation problems
  • Solve inverse variation problems
  • Solve problems involving joint variation
Week 13

Module 12.1

  • Solve systems of equations by graphing.
  • Solve systems of equations by substitution.
  • Solve systems of equations by elimination
  • Identify inconsistent systems of equations containing two variables.
  • Express the solution of a system of dependent equations containing two variables.
Week 13

Module 12.2

  • Solve systems of equations in three variables
  • Identify inconsistent systems of equations containing three variables
  • Express solutions of a system of dependent equations containing three variables