Difference between revisions of "Matrix Algebra and Matrix Multiplication"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
Line 44: Line 44:
  
 
===Multiplying matrices by scalars===
 
===Multiplying matrices by scalars===
 +
When multiplying a matrix by a scalar (or number), all we need to do is multiply each entry of the matrix by the scalar. For example:
  
 +
<math>3\begin{bmatrix}
 +
1 & 2 & 3\\
 +
0 & 1 & 2\\
 +
0 & 0 & 1
 +
\end{bmatrix} =
 +
3 & 6 & 9\\
 +
0 & 3 & 6\\
 +
0 & 0 & 3
 +
\end{bmatrix}
 +
</math>
 +
 +
 +
<math>-\frac{1}{2}\begin{bmatrix}
 +
2 & -4 & 8\\
 +
-2 & 1 & -6\\
 +
0 & 0 & 7
 +
\end{bmatrix} =
 +
-1 & 2 & -4\\
 +
1 & -\frac{1}{2} & 3\\
 +
0 & 0 & -\frac{7}{2}
 +
\end{bmatrix}
 +
</math>
  
 
===Multiplying matrices===
 
===Multiplying matrices===

Revision as of 11:32, 17 September 2021

Matrix Operations

Adding and subtracting matrices

In order to add or subtract two matrices, they must be of the same dimension; that is, the two matrices must have the same number of rows and the same number of columns. To add two matrices together, we simply need to add every entry in one matrix to the entry in the same row and same column in the other matrix. For example:


Multiplying matrices by scalars

When multiplying a matrix by a scalar (or number), all we need to do is multiply each entry of the matrix by the scalar. For example:

Failed to parse (syntax error): {\displaystyle 3\begin{bmatrix} 1 & 2 & 3\\ 0 & 1 & 2\\ 0 & 0 & 1 \end{bmatrix} = 3 & 6 & 9\\ 0 & 3 & 6\\ 0 & 0 & 3 \end{bmatrix} }


Failed to parse (syntax error): {\displaystyle -\frac{1}{2}\begin{bmatrix} 2 & -4 & 8\\ -2 & 1 & -6\\ 0 & 0 & 7 \end{bmatrix} = -1 & 2 & -4\\ 1 & -\frac{1}{2} & 3\\ 0 & 0 & -\frac{7}{2} \end{bmatrix} }

Multiplying matrices

Resources