Difference between revisions of "Finding Roots of an Equation"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
+ | In mathematics, the roots of a function are the x-values that make y = 0. For example, the roots of the polynomial <math> y = x^2 - 4 </math> are 2 and -2, since <math> 0 = x^2 - 4 \implies 0 = (x - 2)(x + 2) \implies x = -2, 2</math>. The roots of <math> y = \frac{(2x - 5)(3 - x)}{x(x^2 + 1)} </math> are 3 and 5/2, since only the numerator needs to equal 0 for y to equal 0. The roots of <math> y = \frac{(x^2 - 4)(x-1)}{(x-2)} are -2 and 1. Note that 2 is not a root of this function since it makes both the denominator and numerator 0 (not just the numerator), and 0/0 is undefined. | ||
+ | |||
==Resources== | ==Resources== | ||
− | |||
* [https://www.freemathhelp.com/finding-roots/#:~:text=A%20root%20is%20a%20value,f%20(%20x%20)%20%3D%200%20. Finding Roots], Free Math Help | * [https://www.freemathhelp.com/finding-roots/#:~:text=A%20root%20is%20a%20value,f%20(%20x%20)%20%3D%200%20. Finding Roots], Free Math Help |
Revision as of 16:18, 17 September 2021
In mathematics, the roots of a function are the x-values that make y = 0. For example, the roots of the polynomial are 2 and -2, since . The roots of are 3 and 5/2, since only the numerator needs to equal 0 for y to equal 0. The roots of <math> y = \frac{(x^2 - 4)(x-1)}{(x-2)} are -2 and 1. Note that 2 is not a root of this function since it makes both the denominator and numerator 0 (not just the numerator), and 0/0 is undefined.
Resources
- Finding Roots, Free Math Help