Difference between revisions of "Arc Length"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
We can deduce that the length of a curve with parametric equations <math>\begin{cases} x=f(t) \\ y=g(t) \end{cases} </math>, <math>a\le t\le b </math> should be:<blockquote><math>L=\int_a^b\sqrt{\biggl(\frac{dx}{dt}\biggr)^2+\biggl(\frac{dy}{dt}\biggr)^2}dt </math></blockquote>Since vector functions are fundamentally parametric equations with directions, we can utilize the formula above into the length of a space curve. | We can deduce that the length of a curve with parametric equations <math>\begin{cases} x=f(t) \\ y=g(t) \end{cases} </math>, <math>a\le t\le b </math> should be:<blockquote><math>L=\int_a^b\sqrt{\biggl(\frac{dx}{dt}\biggr)^2+\biggl(\frac{dy}{dt}\biggr)^2}dt </math></blockquote>Since vector functions are fundamentally parametric equations with directions, we can utilize the formula above into the length of a space curve. | ||
− | + | ==Arc length of a space curve== | |
If the curve has the vector equation <math>\mathbf{r}(t)=\langle f(t),g(t),h(t)\rangle,a\le t\le b</math>, or, equivalently, the parametric equations <math>x=f(t),y=g(t),z=h(t)</math>, where <math>f',g',h'</math> are continuous, then the length of the curve from <math>t=a</math> to <math>t=b</math> is: | If the curve has the vector equation <math>\mathbf{r}(t)=\langle f(t),g(t),h(t)\rangle,a\le t\le b</math>, or, equivalently, the parametric equations <math>x=f(t),y=g(t),z=h(t)</math>, where <math>f',g',h'</math> are continuous, then the length of the curve from <math>t=a</math> to <math>t=b</math> is: | ||
:<math>L=\int_a^b\sqrt{[f'(t)]^2+[g'(t)]^2+[h'(t)]^2}dt=\int_a^b\sqrt{\biggl(\frac{dx}{dt}\biggr)^2+\biggl(\frac{dy}{dt}\biggr)^2+\biggl(\frac{dx}{dz}\biggr)^2}dt</math>}} | :<math>L=\int_a^b\sqrt{[f'(t)]^2+[g'(t)]^2+[h'(t)]^2}dt=\int_a^b\sqrt{\biggl(\frac{dx}{dt}\biggr)^2+\biggl(\frac{dy}{dt}\biggr)^2+\biggl(\frac{dx}{dz}\biggr)^2}dt</math>}} | ||
For those who prefer simplicity, the formula can be rewritten into:<blockquote><math>L=\int_a^b|\mathbf{r}'(t)|dt\quad </math> or <math>\quad\frac{dL}{dt}=|\mathbf{r}'(t)|</math></blockquote> | For those who prefer simplicity, the formula can be rewritten into:<blockquote><math>L=\int_a^b|\mathbf{r}'(t)|dt\quad </math> or <math>\quad\frac{dL}{dt}=|\mathbf{r}'(t)|</math></blockquote> | ||
+ | |||
+ | ===Example Problem=== | ||
+ | Find the circumference of the circle given by the parametric equations <math>x(t)=R\cos(t),y(t)=R\sin(t)</math> , with <math>t\in[0,2\pi]</math>. | ||
+ | |||
+ | :<math>\begin{align}s&=\int\limits_0^{2\pi}\sqrt{\left(\tfrac{d}{dt}\big(R\cos(t)\big)\right)^2+\left(\tfrac{d}{dt}\big(R\sin(t)\big)\right)^2}dt\\ | ||
+ | &=\int\limits_0^{2\pi}\sqrt{\big(-R\sin(t)\big)^2+\big(R\cos(t)\big)^2}dt\\ | ||
+ | &=\int\limits_0^{2\pi}\sqrt{R^2\big(\sin^2(t)+\cos^2(t)\big)}dt\\ | ||
+ | &=\int\limits_0^{2\pi}Rdt\\ | ||
+ | &=R\cdot t\Big|_0^{2\pi}\\ | ||
+ | &=\mathbf{2\pi R}\end{align}</math> | ||
==Resources== | ==Resources== | ||
* [https://openstax.org/books/calculus-volume-3/pages/3-3-arc-length-and-curvature Arc Length and Curvature], OpenStax | * [https://openstax.org/books/calculus-volume-3/pages/3-3-arc-length-and-curvature Arc Length and Curvature], OpenStax |
Revision as of 14:00, 1 October 2021
We can deduce that the length of a curve with parametric equations , should be:
Since vector functions are fundamentally parametric equations with directions, we can utilize the formula above into the length of a space curve.
Arc length of a space curve
If the curve has the vector equation , or, equivalently, the parametric equations , where are continuous, then the length of the curve from to is:
- }}
For those who prefer simplicity, the formula can be rewritten into:
or
Example Problem
Find the circumference of the circle given by the parametric equations , with .
Resources
- Arc Length and Curvature, OpenStax