Difference between revisions of "Lagrange Multipliers"
| Line 45: | Line 45: | ||
==Resources== | ==Resources== | ||
| + | * [https://en.wikibooks.org/wiki/Calculus_Optimization_Methods/Lagrange_Multipliers Lagrange Multipliers], WikiBooks: Calculus Optimization Methods | ||
===Videos=== | ===Videos=== | ||
Revision as of 12:22, 6 October 2021
The method of Lagrange multipliers solves the constrained optimization problem by transforming it into a non-constrained optimization problem of the form:
Then finding the gradient and Hessian as was done above will determine any optimum values of .
Suppose we now want to find optimum values for subject to from [2].
Then the Lagrangian method will result in a non-constrained function.
The gradient for this new function is
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial \mathcal{L}}{\partial x}(x,y,\lambda)= 4x+\lambda (-1)=0}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial \mathcal{L}}{\partial y}(x,y,\lambda)= 2y+\lambda (-1)=0}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial \mathcal{L}}{\partial \lambda}(x,y,\lambda)=1-x-y=0}
Finding the stationary points of the above equations can be obtained from their matrix from.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} 4 & 0 & -1 \\ 0& 2 & -1 \\ -1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x\\ y \\ \lambda \end{bmatrix}= \begin{bmatrix} 0\\ 0\\ -1 \end{bmatrix} }
This results in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1/3, y=2/3, \lambda=4/3} .
Next we can use the Hessian as before to determine the type of this stationary point.
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H(\mathcal{L})= \begin{bmatrix} 4 & 0 & -1 \\ 0& 2 & -1 \\ -1&-1&0 \end{bmatrix} }
Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H(\mathcal{L}) >0 } then the solution Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1/3,2/3,4/3)} minimizes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y)=2x^2+y^2} subject to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x+y=1} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y)=2/3} .
Resources
- Lagrange Multipliers, WikiBooks: Calculus Optimization Methods
Videos
- LaGrange Multipliers - Finding Maximum or Minimum Values Video by patrickJMT
- Lagrange Multipliers Practice Problems Video by ames Hamblin 2017
- Lagrange multipliers | MIT 18.02SC Multivariable Calculus, Fall 2010 Video by MIT OpenCourseWare
- Lagrange Multipliers - Two Constraints -patrickJMT 2009 Video by patrickJMT 2009
- Lagrange multipliers (3 variables) | MIT 18.02SC Multivariable Calculus, Fall 2010 Video by MIT OpenCourseWare