Difference between revisions of "Lagrange Multipliers"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
Line 45: Line 45:
  
 
==Resources==
 
==Resources==
 +
* [https://en.wikibooks.org/wiki/Calculus_Optimization_Methods/Lagrange_Multipliers Lagrange Multipliers], WikiBooks: Calculus Optimization Methods
  
 
===Videos===
 
===Videos===

Revision as of 12:22, 6 October 2021

The method of Lagrange multipliers solves the constrained optimization problem by transforming it into a non-constrained optimization problem of the form:

Then finding the gradient and Hessian as was done above will determine any optimum values of .

Suppose we now want to find optimum values for subject to from [2].

Then the Lagrangian method will result in a non-constrained function.

The gradient for this new function is

Finding the stationary points of the above equations can be obtained from their matrix from.

This results in .

Next we can use the Hessian as before to determine the type of this stationary point.

Since then the solution minimizes subject to with .


Resources

Videos