Difference between revisions of "Functions:Forward Image"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
Line 24: Line 24:
  
 
===Generalization to binary relations===
 
===Generalization to binary relations===
If {\displaystyle R}R is an arbitrary binary relation on {\displaystyle X\times Y,}{\displaystyle X\times Y,} then the set {\displaystyle \{y\in Y:xRy{\text{ for some }}x\in X\}}{\displaystyle \{y\in Y:xRy{\text{ for some }}x\in X\}} is called the image, or the range, of {\displaystyle R.}R. Dually, the set {\displaystyle \{x\in X:xRy{\text{ for some }}y\in Y\}}{\displaystyle \{x\in X:xRy{\text{ for some }}y\in Y\}} is called the domain of {\displaystyle R.}R.
+
If <math>R</math> is an arbitrary binary relation on <math>X\times Y</math>, then the set <math>\{y\in Y:xRy{\text{ for some }}x\in X\}}</math> is called the image, or the range, of <math>R</math>. Dually, the set <math>\{x\in X:xRy{\text{ for some }}y\in Y\}</math> is called the domain of <math>R</math>.

Revision as of 09:32, 12 October 2021

In mathematics, the image of a function is the set of all output values it may produce.

More generally, evaluating a given function at each element of a given subset of its domain produces a set, called the "image of under (or through) ". Similarly, the inverse image (or preimage) of a given subset of the codomain of , is the set of all elements of the domain that map to the members of .

Image and inverse image may also be defined for general binary relations, not just functions.

Definition

The word "image" is used in three related ways. In these definitions, is a function from the set to the set .

Image of an element

If is a member of , then the image of under , denoted , is the value of when applied to . is alternatively known as the output of for argument .

Given , the function is said to "take the value " or "take as a value" if there exists some in the function's domain such that . Similarly, given a set , is said to "take a value in " if there exists some in the function's domain such that . However, " takes all values in " and " is valued in " means that for every point in 's domain.

Image of a subset

The image of a subset under , denoted , is the subset of which can be defined using set-builder notation as follows:

When there is no risk of confusion, is simply written as . This convention is a common one; the intended meaning must be inferred from the context. This makes a function whose domain is the power set of (the set of all subsets of ), and whose codomain is the power set of .

Image of a function

The image of a function is the image of its entire domain, also known as the range of the function.[3] This usage should be avoided because the word "range" is also commonly used to mean the codomain of {\displaystyle f.}f.

Generalization to binary relations

If is an arbitrary binary relation on , then the set Failed to parse (syntax error): {\displaystyle \{y\in Y:xRy{\text{ for some }}x\in X\}}} is called the image, or the range, of . Dually, the set is called the domain of .