Difference between revisions of "Graphs of Polynomials"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
Line 60: Line 60:
  
 
==Resources==
 
==Resources==
 +
* [https://courses.lumenlearning.com/collegealgebra2017/chapter/graphs-of-polynomial-functions/ Graphs of Polynomial Functions], Lumen Learning College Algebra
 
* [https://en.wikipedia.org/wiki/Polynomial Polynomial], Wikipedia
 
* [https://en.wikipedia.org/wiki/Polynomial Polynomial], Wikipedia
 
  
 
== Licensing ==  
 
== Licensing ==  
 
Content obtained and/or adapted from:
 
Content obtained and/or adapted from:
 
* [https://en.wikipedia.org/wiki/Polynomial Polynomial, Wikipedia] under a CC BY-SA license
 
* [https://en.wikipedia.org/wiki/Polynomial Polynomial, Wikipedia] under a CC BY-SA license

Revision as of 13:30, 21 October 2021

A polynomial function is a function that can be defined by evaluating a polynomial. More precisely, a function f of one argument from a given domain is a polynomial function if there exists a polynomial

that evaluates to for all x in the domain of f (here, n is a non-negative integer and a0, a1, a2, ..., an are constant coefficients). Generally, unless otherwise specified, polynomial functions have complex coefficients, arguments, and values. In particular, a polynomial, restricted to have real coefficients, defines a function from the complex numbers to the complex numbers. If the domain of this function is also restricted to the reals, the resulting function is a real function that maps reals to reals.

For example, the function f, defined by

is a polynomial function of one variable. Polynomial functions of several variables are similarly defined, using polynomials in more than one indeterminate, as in

According to the definition of polynomial functions, there may be expressions that obviously are not polynomials but nevertheless define polynomial functions. An example is the expression which takes the same values as the polynomial on the interval , and thus both expressions define the same polynomial function on this interval.

Every polynomial function is continuous, smooth, and entire.

Graphs

A polynomial function in one real variable can be represented by a graph.

A non-constant polynomial function tends to infinity when the variable increases indefinitely (in absolute value). If the degree is higher than one, the graph does not have any asymptote. It has two parabolic branches with vertical direction (one branch for positive x and one for negative x).

Polynomial graphs are analyzed in calculus using intercepts, slopes, concavity, and end behavior.

Resources

Licensing

Content obtained and/or adapted from: