Difference between revisions of "Integrals Resulting in Inverse Trigonometric Functions"
Line 11: | Line 11: | ||
<p><strong>Solution</strong></p> | <p><strong>Solution</strong></p> | ||
− | <p>Substitute <math> | + | <p>Substitute <math> u=3x</math>. Then <math> du=3dx</math> and we have</p> |
− | <p style="text-align: center;"><math> | + | <p style="text-align: center;"><math> \int\dfrac{dx}{\sqrt{4 - 9x^2}}=\dfrac{1}{3}\int\dfrac{du}{\sqrt{4 - u^2}}.</math></p> |
<p>Applying the formula with <math>\( a=2,\)</math> we obtain</p> | <p>Applying the formula with <math>\( a=2,\)</math> we obtain</p> |
Revision as of 14:19, 28 October 2021
Evaluate the integral
Solution
Substitute . Then and we have
Applying the formula with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \( a=2,\)} we obtain
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \[ \int;\dfrac{dx}{\sqrt{4 - 9x^2}}=\dfrac{1}{3}\int\dfrac{du}{\sqrt{4 - u^2}}=\dfrac{1}{3}\arcsin \left(\dfrac{u}{2}\right)+C=\dfrac{1}{3}\arcsin \left(\dfrac{3x}{2}\right)+C.\]}
Resources
Integration into Inverse trigonometric functions using Substitution by The Organic Chemistry Tutor
Integrating using Inverse Trigonometric Functions by patrickJMT