Difference between revisions of "Integrals Resulting in Inverse Trigonometric Functions"
Jump to navigation
Jump to search
Line 17: | Line 17: | ||
<p>Applying the formula with <math> a=2, </math> we obtain</p> | <p>Applying the formula with <math> a=2, </math> we obtain</p> | ||
− | <p class="mt-indent-3" style="text-align:center;"><math> \int\dfrac{dx}{\sqrt{4 - 9x^2}}=\dfrac{1}{3}\int\dfrac{du}{\sqrt{4 - u^2}}=\dfrac{1}{3}\arcsin \left(\dfrac{u}{2}\right)+C=\dfrac{1}{3}\arcsin \left(\dfrac{3x}{2}\right)+C. | + | <p class="mt-indent-3" style="text-align:center;"><math> \int\dfrac{dx}{\sqrt{4 - 9x^2}}=\dfrac{1}{3}\int\dfrac{du}{\sqrt{4 - u^2}}=\dfrac{1}{3}\arcsin \left(\dfrac{u}{2}\right)+C=\dfrac{1}{3}\arcsin \left(\dfrac{3x}{2}\right)+C.</math></p> |
==Resources== | ==Resources== |
Revision as of 14:20, 28 October 2021
Evaluate the integral
Solution
Substitute . Then and we have
Applying the formula with we obtain
Resources
Integration into Inverse trigonometric functions using Substitution by The Organic Chemistry Tutor
Integrating using Inverse Trigonometric Functions by patrickJMT