Difference between revisions of "Integrals Resulting in Inverse Trigonometric Functions"
		
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
		
		
		
		
		
	
| Line 5: | Line 5: | ||
| <math> \int\frac{du}{u\sqrt{u^2 - a^2}} =\frac{1}{a}\arcsec \left(\dfrac{|u|}{a}\right) + C </math> | <math> \int\frac{du}{u\sqrt{u^2 - a^2}} =\frac{1}{a}\arcsec \left(\dfrac{|u|}{a}\right) + C </math> | ||
| + | |||
| + | ==Example Problem== | ||
| <p>Evaluate the integral</p> | <p>Evaluate the integral</p> | ||
Revision as of 14:21, 28 October 2021
Example Problem
Evaluate the integral
Solution
Substitute . Then and we have
Applying the formula with we obtain
Resources
Integration into Inverse trigonometric functions using Substitution by The Organic Chemistry Tutor
Integrating using Inverse Trigonometric Functions by patrickJMT

