Difference between revisions of "Conservative Vector Fields"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
Line 71: Line 71:
  
 
<math>\int_{\mathbf{q} \in C_3} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q} = 0</math> <math>\implies \int_{\mathbf{q} \in C_1} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q} = \int_{\mathbf{q} \in C_2} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q}</math>
 
<math>\int_{\mathbf{q} \in C_3} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q} = 0</math> <math>\implies \int_{\mathbf{q} \in C_1} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q} = \int_{\mathbf{q} \in C_2} \mathbf{F}(\mathbf{q}) \cdot d\mathbf{q}</math>
 +
 +
==Scalar Potential Function==
 +
If '''F''' is a [[conservative vector field]] (also called ''irrotational'', ''[[Curl (mathematics)|curl]]-free'', or ''potential''), and its components have [[continuous function|continuous]] [[partial derivative]]s, the '''potential''' of '''F''' with respect to a reference point <math>\mathbf r_0</math> is defined in terms of the [[line integral]]:
 +
 +
:<math>V(\mathbf r) = -\int_C \mathbf{F}(\mathbf{r})\cdot\,d\mathbf{r} = -\int_a^b \mathbf{F}(\mathbf{r}(t))\cdot\mathbf{r}'(t)\,dt,</math>
 +
 +
where ''C'' is a parametrized path from <math>\mathbf r_0</math> to <math>\mathbf r,</math>
 +
 +
: <math>\mathbf{r}(t), a\leq t\leq b, \mathbf{r}(a)=\mathbf{r_0}, \mathbf{r}(b)=\mathbf{r}.</math>
 +
 +
The fact that the line integral depends on the path ''C'' only through its terminal points <math>\mathbf r_0</math> and <math>\mathbf r</math> is, in essence, the '''path independence property''' of a conservative vector field. The [[Gradient theorem|fundamental theorem of line integrals]] implies that if ''V'' is defined in this way, then <math> \mathbf{F}= -\nabla V,</math> so that ''V'' is a scalar potential of the conservative vector field '''F'''. Scalar potential is not determined by the vector field alone: indeed, the gradient of a function is unaffected if a constant is added to it. If ''V'' is defined in terms of the line integral, the ambiguity of ''V'' reflects the freedom in the choice of the reference point <math>\mathbf r_0.</math>
 +
  
  
Line 105: Line 117:
 
Content obtained and/or adapted from:
 
Content obtained and/or adapted from:
 
* [https://en.wikibooks.org/wiki/Calculus/Vector_calculus#Volume,_path,_and_surface_integrals Vector calculus, Wikibooks: Calculus] under a CC BY-SA license
 
* [https://en.wikibooks.org/wiki/Calculus/Vector_calculus#Volume,_path,_and_surface_integrals Vector calculus, Wikibooks: Calculus] under a CC BY-SA license
 +
* [https://en.wikipedia.org/wiki/Scalar_potential Scalar potential, Wikipedia] under a CC BY-SA license

Revision as of 08:14, 3 November 2021

Path Independence

If a vector field F is the gradient of a scalar field G (i.e. if F is conservative), that is,

then by the multivariable chain rule, the derivative of the composition of G and r(t) is

which happens to be the integrand for the line integral of F on r(t). It follows, given a path C , that

In other words, the integral of F over C depends solely on the values of G at the points r(b) and r(a), and is thus independent of the path between them. For this reason, a line integral of a conservative vector field is called path independent.

Stokes' Theorem

Stokes' Theorem is effectively a generalization of Green's theorem to 3 dimensions, and the "curl" is a generalization of the quantity to 3 dimensions. An arbitrary oriented surface can be articulated into a family of infinitesimal surfaces, some parallel to the xy-plane, others parallel to the zx-plane, and the remainder parallel to the yz-plane. Let denote an arbitrary vector field.

Let be a surface that is parallel to the yz-plane with counter-clockwise oriented boundary . Green's theorem gives:

is positive if the normal direction to points in the positive x direction and is negative if otherwise. If the normal direction to points in the negative x direction, then is oriented clockwise instead of counter-clockwise in the yz-plane.

Decomposing a 3D loop into an ensemble of infinitesimal loops that are parallel to the yz, zx, or xy planes.

Repeating this argument for being parallel to the zx-plane and xy-plane respectively gives:

and

Treating as an ensemble of infinitesimal surfaces parallel to the yz-plane, zx-plane, or xy-plane gives:

This is Stokes' theorem, and is the "curl" of which generalizes the "circulation density" to 3 dimensions.

The direction of at is effectively an "axis of rotation" around which the counterclockwise circulation density in a plane whose normal is parallel to is . Out of all planes that pass through , the plane whose normal is parallel to has the largest counterclockwise circulation density at which is .

An arbitrary vector field that is differentiable everywhere is considered to be "irrotational" or "conservative" if everywhere, or equivalently that for all continuous closed curves

Conservative vector fields

A vector field for which at all points is an "conservative" vector field. can also be referred to as being "irrotational" since the gain around any closed curve is always 0.

A key property of a conservative vector field is that the gain of along a continuous curve is purely a function of the curve's end points. If and are two continuous curves which share the same starting point and end point , then . In other words, the gain is purely a function of and . This property can be derived from Stokes' theorem as follows:

Invert the orientation of to get and combine and to get a continuous closed curve , linking the curves together at the endpoints and . Let denote a surface for which is the counterclockwise oriented boundary.

Stokes' theorem states that . The gain around is the gain along minus the gain along : . Therefore:

Scalar Potential Function

If F is a conservative vector field (also called irrotational, curl-free, or potential), and its components have continuous partial derivatives, the potential of F with respect to a reference point is defined in terms of the line integral:

where C is a parametrized path from to

The fact that the line integral depends on the path C only through its terminal points and is, in essence, the path independence property of a conservative vector field. The fundamental theorem of line integrals implies that if V is defined in this way, then so that V is a scalar potential of the conservative vector field F. Scalar potential is not determined by the vector field alone: indeed, the gradient of a function is unaffected if a constant is added to it. If V is defined in terms of the line integral, the ambiguity of V reflects the freedom in the choice of the reference point


Resources

Conservative Vector Fields


Finding a Potential Function of a Conservative Vector Field


The Fundamental Theorem of Line Integrals

Licensing

Content obtained and/or adapted from: