Difference between revisions of "Complete Metric Spaces"

From Department of Mathematics at UTSA
Jump to navigation Jump to search
(Created page with "<h1 id="toc0"><span>Complete Metric Spaces</span></h1> <p>Recall that a sequence <span class="math-inline"><math>(x_n)_{n=1}^{\infty}</math></span> in <span class="math-inline...")
 
 
Line 1: Line 1:
<h1 id="toc0"><span>Complete Metric Spaces</span></h1>
 
 
<p>Recall that a sequence <span class="math-inline"><math>(x_n)_{n=1}^{\infty}</math></span> in <span class="math-inline"><math>M</math></span> is called a Cauchy sequence if for all <span class="math-inline"><math>\epsilon > 0</math></span> there exists an <span class="math-inline"><math>N \in \mathbb{N}</math></span> such that if <span class="math-inline"><math>m, n \geq N</math></span> then <span class="math-inline"><math>d(x_m, x_n) < \epsilon</math></span>.</p>
 
<p>Recall that a sequence <span class="math-inline"><math>(x_n)_{n=1}^{\infty}</math></span> in <span class="math-inline"><math>M</math></span> is called a Cauchy sequence if for all <span class="math-inline"><math>\epsilon > 0</math></span> there exists an <span class="math-inline"><math>N \in \mathbb{N}</math></span> such that if <span class="math-inline"><math>m, n \geq N</math></span> then <span class="math-inline"><math>d(x_m, x_n) < \epsilon</math></span>.</p>
 
<p>Consider any metric space <span class="math-inline"><math>(M, d)</math></span>. If <span class="math-inline"><math>(M, d)</math></span> is such that every Cauchy sequence converges in <span class="math-inline"><math>M</math></span>, then we give this metric space a special name.</p>
 
<p>Consider any metric space <span class="math-inline"><math>(M, d)</math></span>. If <span class="math-inline"><math>(M, d)</math></span> is such that every Cauchy sequence converges in <span class="math-inline"><math>M</math></span>, then we give this metric space a special name.</p>
Line 8: Line 7:
 
<div style="text-align: center;"><math>\begin{align} \quad (x_n)_{n=1}^{\infty} = \left ( 1 - \frac{1}{n} \right )_{n=1}^{\infty} = \left ( 0, \frac{1}{2}, \frac{2}{3}, ... \right ) \end{align}</math></div>
 
<div style="text-align: center;"><math>\begin{align} \quad (x_n)_{n=1}^{\infty} = \left ( 1 - \frac{1}{n} \right )_{n=1}^{\infty} = \left ( 0, \frac{1}{2}, \frac{2}{3}, ... \right ) \end{align}</math></div>
 
<p>We claim that <span class="math-inline"><math>(x_n)_{n=1}^{\infty}</math></span> is a Cauchy sequence. Let's prove this. Let <span class="math-inline"><math>m, n \in \mathbb{N}</math></span>, and consider:</p>
 
<p>We claim that <span class="math-inline"><math>(x_n)_{n=1}^{\infty}</math></span> is a Cauchy sequence. Let's prove this. Let <span class="math-inline"><math>m, n \in \mathbb{N}</math></span>, and consider:</p>
<div style="text-align: center;"><math>\begin{align} \quad d(x_m, x_n) = \biggr \lvert \left ( 1 - \frac{1}{m} \right ) - \left ( 1 - \frac{1}{n} \right ) \biggr \rvert = \biggr \lvert \frac{1}{n} - \frac{1}{m} \biggr \rvert \leq \biggr \lvert \frac{1}{n} \biggr \rvert + \biggr \lvert \frac{1}{m} \biggr \rvert = \frac{1}{n} + \frac{1}{m} \end{align}</math></div>
+
<div style="text-align: center;"><math>\begin{align} \quad d(x_m, x_n) = \left| \left ( 1 - \frac{1}{m} \right ) - \left ( 1 - \frac{1}{n} \right ) \right| = \left| \frac{1}{n} - \frac{1}{m} \right| \leq \left| \frac{1}{n} \right| + \left| \frac{1}{m} \right| = \frac{1}{n} + \frac{1}{m} \end{align}</math></div>
 
<p>Choose <span class="math-inline"><math>N</math></span> such that <span class="math-inline"><math>N > \frac{2}{\epsilon}</math></span>. Then if <span class="math-inline"><math>m, n \in \mathbb{N}</math></span> are such that <span class="math-inline"><math>m, n, \geq N</math></span> then:</p>
 
<p>Choose <span class="math-inline"><math>N</math></span> such that <span class="math-inline"><math>N > \frac{2}{\epsilon}</math></span>. Then if <span class="math-inline"><math>m, n \in \mathbb{N}</math></span> are such that <span class="math-inline"><math>m, n, \geq N</math></span> then:</p>
 
<div style="text-align: center;"><math>\begin{align} \quad m \geq N > \frac{2}{\epsilon} \quad \mathrm{so} \quad \frac{1}{m} \leq \frac{1}{N} < \frac{\epsilon}{2} \\ \quad n \geq N > \frac{2}{\epsilon} \quad \mathrm{so} \quad \frac{1}{n} \leq \frac{1}{N} < \frac{\epsilon}{2} \end{align}</math></div>
 
<div style="text-align: center;"><math>\begin{align} \quad m \geq N > \frac{2}{\epsilon} \quad \mathrm{so} \quad \frac{1}{m} \leq \frac{1}{N} < \frac{\epsilon}{2} \\ \quad n \geq N > \frac{2}{\epsilon} \quad \mathrm{so} \quad \frac{1}{n} \leq \frac{1}{N} < \frac{\epsilon}{2} \end{align}</math></div>
Line 14: Line 13:
 
<div style="text-align: center;"><math>\begin{align} \quad d(x_m, x_n) \leq \frac{1}{n} + \frac{1}{m} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{align}</math></div>
 
<div style="text-align: center;"><math>\begin{align} \quad d(x_m, x_n) \leq \frac{1}{n} + \frac{1}{m} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{align}</math></div>
 
<p>So <span class="math-inline"><math>(x_n)_{n=1}^{\infty}</math></span> is indeed a Cauchy sequence. However, it should be intuitively clear that <span class="math-inline"><math>\lim_{n \to \infty} x_n = 1</math></span>, but <span class="math-inline"><math>1 \not \in [0, 1)</math></span>! Therefore <span class="math-inline"><math>(x_n)_{n=1}^{\infty}</math></span> does not converge in <span class="math-inline"><math>M</math></span> and hence <span class="math-inline"><math>(M, d)</math></span> is not a complete metric space.</p>
 
<p>So <span class="math-inline"><math>(x_n)_{n=1}^{\infty}</math></span> is indeed a Cauchy sequence. However, it should be intuitively clear that <span class="math-inline"><math>\lim_{n \to \infty} x_n = 1</math></span>, but <span class="math-inline"><math>1 \not \in [0, 1)</math></span>! Therefore <span class="math-inline"><math>(x_n)_{n=1}^{\infty}</math></span> does not converge in <span class="math-inline"><math>M</math></span> and hence <span class="math-inline"><math>(M, d)</math></span> is not a complete metric space.</p>
 +
  
 
==Licensing==
 
==Licensing==
 
Content obtained and/or adapted from:
 
Content obtained and/or adapted from:
 
* [http://mathonline.wikidot.com/complete-metric-spaces Complete Metric Spaces, mathonline.wikidot.com] under a CC BY-SA license
 
* [http://mathonline.wikidot.com/complete-metric-spaces Complete Metric Spaces, mathonline.wikidot.com] under a CC BY-SA license

Latest revision as of 15:27, 8 November 2021

Recall that a sequence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_n)_{n=1}^{\infty}} in is called a Cauchy sequence if for all there exists an such that if then .

Consider any metric space . If is such that every Cauchy sequence converges in , then we give this metric space a special name.

Definition: Let be a metric space. Then is said to be Complete if every Cauchy sequence converges in .

In general, it is much easier to show that a metric space is not complete by finding a Cauchy sequence that does not converge in the space. For example, consider the set with the standard Euclidean metric defined for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x, y \in M} . Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (M, d)} is a metric space. Now, consider the following sequence in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \quad (x_n)_{n=1}^{\infty} = \left ( 1 - \frac{1}{n} \right )_{n=1}^{\infty} = \left ( 0, \frac{1}{2}, \frac{2}{3}, ... \right ) \end{align}}

We claim that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_n)_{n=1}^{\infty}} is a Cauchy sequence. Let's prove this. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m, n \in \mathbb{N}} , and consider:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \quad d(x_m, x_n) = \left| \left ( 1 - \frac{1}{m} \right ) - \left ( 1 - \frac{1}{n} \right ) \right| = \left| \frac{1}{n} - \frac{1}{m} \right| \leq \left| \frac{1}{n} \right| + \left| \frac{1}{m} \right| = \frac{1}{n} + \frac{1}{m} \end{align}}

Choose Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N > \frac{2}{\epsilon}} . Then if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m, n \in \mathbb{N}} are such that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m, n, \geq N} then:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \quad m \geq N > \frac{2}{\epsilon} \quad \mathrm{so} \quad \frac{1}{m} \leq \frac{1}{N} < \frac{\epsilon}{2} \\ \quad n \geq N > \frac{2}{\epsilon} \quad \mathrm{so} \quad \frac{1}{n} \leq \frac{1}{N} < \frac{\epsilon}{2} \end{align}}

Hence for all Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m, n \geq N} we have that:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \quad d(x_m, x_n) \leq \frac{1}{n} + \frac{1}{m} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{align}}

So Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_n)_{n=1}^{\infty}} is indeed a Cauchy sequence. However, it should be intuitively clear that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \to \infty} x_n = 1} , but Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 \not \in [0, 1)} ! Therefore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_n)_{n=1}^{\infty}} does not converge in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} and hence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (M, d)} is not a complete metric space.


Licensing

Content obtained and/or adapted from: