Difference between revisions of "Complete Metric Spaces"
(Created page with "<h1 id="toc0"><span>Complete Metric Spaces</span></h1> <p>Recall that a sequence <span class="math-inline"><math>(x_n)_{n=1}^{\infty}</math></span> in <span class="math-inline...") |
|||
Line 1: | Line 1: | ||
− | |||
<p>Recall that a sequence <span class="math-inline"><math>(x_n)_{n=1}^{\infty}</math></span> in <span class="math-inline"><math>M</math></span> is called a Cauchy sequence if for all <span class="math-inline"><math>\epsilon > 0</math></span> there exists an <span class="math-inline"><math>N \in \mathbb{N}</math></span> such that if <span class="math-inline"><math>m, n \geq N</math></span> then <span class="math-inline"><math>d(x_m, x_n) < \epsilon</math></span>.</p> | <p>Recall that a sequence <span class="math-inline"><math>(x_n)_{n=1}^{\infty}</math></span> in <span class="math-inline"><math>M</math></span> is called a Cauchy sequence if for all <span class="math-inline"><math>\epsilon > 0</math></span> there exists an <span class="math-inline"><math>N \in \mathbb{N}</math></span> such that if <span class="math-inline"><math>m, n \geq N</math></span> then <span class="math-inline"><math>d(x_m, x_n) < \epsilon</math></span>.</p> | ||
<p>Consider any metric space <span class="math-inline"><math>(M, d)</math></span>. If <span class="math-inline"><math>(M, d)</math></span> is such that every Cauchy sequence converges in <span class="math-inline"><math>M</math></span>, then we give this metric space a special name.</p> | <p>Consider any metric space <span class="math-inline"><math>(M, d)</math></span>. If <span class="math-inline"><math>(M, d)</math></span> is such that every Cauchy sequence converges in <span class="math-inline"><math>M</math></span>, then we give this metric space a special name.</p> | ||
Line 8: | Line 7: | ||
<div style="text-align: center;"><math>\begin{align} \quad (x_n)_{n=1}^{\infty} = \left ( 1 - \frac{1}{n} \right )_{n=1}^{\infty} = \left ( 0, \frac{1}{2}, \frac{2}{3}, ... \right ) \end{align}</math></div> | <div style="text-align: center;"><math>\begin{align} \quad (x_n)_{n=1}^{\infty} = \left ( 1 - \frac{1}{n} \right )_{n=1}^{\infty} = \left ( 0, \frac{1}{2}, \frac{2}{3}, ... \right ) \end{align}</math></div> | ||
<p>We claim that <span class="math-inline"><math>(x_n)_{n=1}^{\infty}</math></span> is a Cauchy sequence. Let's prove this. Let <span class="math-inline"><math>m, n \in \mathbb{N}</math></span>, and consider:</p> | <p>We claim that <span class="math-inline"><math>(x_n)_{n=1}^{\infty}</math></span> is a Cauchy sequence. Let's prove this. Let <span class="math-inline"><math>m, n \in \mathbb{N}</math></span>, and consider:</p> | ||
− | <div style="text-align: center;"><math>\begin{align} \quad d(x_m, x_n) = \ | + | <div style="text-align: center;"><math>\begin{align} \quad d(x_m, x_n) = \left| \left ( 1 - \frac{1}{m} \right ) - \left ( 1 - \frac{1}{n} \right ) \right| = \left| \frac{1}{n} - \frac{1}{m} \right| \leq \left| \frac{1}{n} \right| + \left| \frac{1}{m} \right| = \frac{1}{n} + \frac{1}{m} \end{align}</math></div> |
<p>Choose <span class="math-inline"><math>N</math></span> such that <span class="math-inline"><math>N > \frac{2}{\epsilon}</math></span>. Then if <span class="math-inline"><math>m, n \in \mathbb{N}</math></span> are such that <span class="math-inline"><math>m, n, \geq N</math></span> then:</p> | <p>Choose <span class="math-inline"><math>N</math></span> such that <span class="math-inline"><math>N > \frac{2}{\epsilon}</math></span>. Then if <span class="math-inline"><math>m, n \in \mathbb{N}</math></span> are such that <span class="math-inline"><math>m, n, \geq N</math></span> then:</p> | ||
<div style="text-align: center;"><math>\begin{align} \quad m \geq N > \frac{2}{\epsilon} \quad \mathrm{so} \quad \frac{1}{m} \leq \frac{1}{N} < \frac{\epsilon}{2} \\ \quad n \geq N > \frac{2}{\epsilon} \quad \mathrm{so} \quad \frac{1}{n} \leq \frac{1}{N} < \frac{\epsilon}{2} \end{align}</math></div> | <div style="text-align: center;"><math>\begin{align} \quad m \geq N > \frac{2}{\epsilon} \quad \mathrm{so} \quad \frac{1}{m} \leq \frac{1}{N} < \frac{\epsilon}{2} \\ \quad n \geq N > \frac{2}{\epsilon} \quad \mathrm{so} \quad \frac{1}{n} \leq \frac{1}{N} < \frac{\epsilon}{2} \end{align}</math></div> | ||
Line 14: | Line 13: | ||
<div style="text-align: center;"><math>\begin{align} \quad d(x_m, x_n) \leq \frac{1}{n} + \frac{1}{m} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{align}</math></div> | <div style="text-align: center;"><math>\begin{align} \quad d(x_m, x_n) \leq \frac{1}{n} + \frac{1}{m} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{align}</math></div> | ||
<p>So <span class="math-inline"><math>(x_n)_{n=1}^{\infty}</math></span> is indeed a Cauchy sequence. However, it should be intuitively clear that <span class="math-inline"><math>\lim_{n \to \infty} x_n = 1</math></span>, but <span class="math-inline"><math>1 \not \in [0, 1)</math></span>! Therefore <span class="math-inline"><math>(x_n)_{n=1}^{\infty}</math></span> does not converge in <span class="math-inline"><math>M</math></span> and hence <span class="math-inline"><math>(M, d)</math></span> is not a complete metric space.</p> | <p>So <span class="math-inline"><math>(x_n)_{n=1}^{\infty}</math></span> is indeed a Cauchy sequence. However, it should be intuitively clear that <span class="math-inline"><math>\lim_{n \to \infty} x_n = 1</math></span>, but <span class="math-inline"><math>1 \not \in [0, 1)</math></span>! Therefore <span class="math-inline"><math>(x_n)_{n=1}^{\infty}</math></span> does not converge in <span class="math-inline"><math>M</math></span> and hence <span class="math-inline"><math>(M, d)</math></span> is not a complete metric space.</p> | ||
+ | |||
==Licensing== | ==Licensing== | ||
Content obtained and/or adapted from: | Content obtained and/or adapted from: | ||
* [http://mathonline.wikidot.com/complete-metric-spaces Complete Metric Spaces, mathonline.wikidot.com] under a CC BY-SA license | * [http://mathonline.wikidot.com/complete-metric-spaces Complete Metric Spaces, mathonline.wikidot.com] under a CC BY-SA license |
Latest revision as of 15:27, 8 November 2021
Recall that a sequence in is called a Cauchy sequence if for all there exists an such that if then .
Consider any metric space . If is such that every Cauchy sequence converges in , then we give this metric space a special name.
Definition: Let be a metric space. Then is said to be Complete if every Cauchy sequence converges in .
In general, it is much easier to show that a metric space is not complete by finding a Cauchy sequence that does not converge in the space. For example, consider the set with the standard Euclidean metric defined for all . Then is a metric space. Now, consider the following sequence in :
We claim that is a Cauchy sequence. Let's prove this. Let , and consider:
Choose such that . Then if are such that then:
Hence for all we have that:
So is indeed a Cauchy sequence. However, it should be intuitively clear that , but ! Therefore does not converge in and hence is not a complete metric space.
Licensing
Content obtained and/or adapted from:
- Complete Metric Spaces, mathonline.wikidot.com under a CC BY-SA license