Difference between revisions of "Compactness in Metric Spaces"
Line 27: | Line 27: | ||
<td><strong>Theorem 1:</strong> If <span class="math-inline"><math>(M, d)</math></span> be a metric space and <span class="math-inline"><math>S \subseteq M</math></span> is a compact subset of <span class="math-inline"><math>M</math></span> then <span class="math-inline"><math>S</math></span> is bounded.</td> | <td><strong>Theorem 1:</strong> If <span class="math-inline"><math>(M, d)</math></span> be a metric space and <span class="math-inline"><math>S \subseteq M</math></span> is a compact subset of <span class="math-inline"><math>M</math></span> then <span class="math-inline"><math>S</math></span> is bounded.</td> | ||
</blockquote> | </blockquote> | ||
− | + | ||
<ul> | <ul> | ||
<li><strong>Proof:</strong> For a fixed <span class="math-inline"><math>x_0 \in S</math></span> and for <span class="math-inline"><math>r > 0</math></span>, consider the ball centered at <span class="math-inline"><math>x_0</math></span> with radius <span class="math-inline"><math>r</math></span>, i.e., <span class="math-inline"><math>B(x_0, r)</math></span>. Let <span class="math-inline"><math>\mathcal F</math></span> denote the collection of balls centered at <span class="math-inline"><math>x_0</math></span> with varying radii <span class="math-inline"><math>r > 0</math></span>:</li> | <li><strong>Proof:</strong> For a fixed <span class="math-inline"><math>x_0 \in S</math></span> and for <span class="math-inline"><math>r > 0</math></span>, consider the ball centered at <span class="math-inline"><math>x_0</math></span> with radius <span class="math-inline"><math>r</math></span>, i.e., <span class="math-inline"><math>B(x_0, r)</math></span>. Let <span class="math-inline"><math>\mathcal F</math></span> denote the collection of balls centered at <span class="math-inline"><math>x_0</math></span> with varying radii <span class="math-inline"><math>r > 0</math></span>:</li> | ||
Line 54: | Line 54: | ||
<li>Hence <span class="math-inline"><math>S</math></span> is bounded. <span class="math-inline"><math>\blacksquare</math></span></li> | <li>Hence <span class="math-inline"><math>S</math></span> is bounded. <span class="math-inline"><math>\blacksquare</math></span></li> | ||
</ul> | </ul> | ||
− | |||
==Licensing== | ==Licensing== | ||
Content obtained and/or adapted from: | Content obtained and/or adapted from: | ||
* [http://mathonline.wikidot.com/compact-sets-in-a-metric-space Compact Sets in a Metric Space, mathonline.wikidot.com] under a CC BY-SA license | * [http://mathonline.wikidot.com/compact-sets-in-a-metric-space Compact Sets in a Metric Space, mathonline.wikidot.com] under a CC BY-SA license |
Revision as of 15:55, 8 November 2021
Compact Sets in a Metric Space
If is a metric space and then a cover or covering of is a collection of subsets in such that:
Furthermore, we said that an open cover (or open covering) is simply a cover that contains only open sets.
We also said that a subset is a subcover/subcovering (or open subcover/subcovering if is an open covering) if is also a cover of , that is:
We can now define the concept of a compact set using the definitions above.
Definition: Let be a metric space. The subset is said to be Compact if every open covering of has a finite subcovering of .
In general, it may be more difficult to show that a subset of a metric space is compact than to show a subset of a metric space is not compact. So, let's look at an example of a subset of a metric space that is not compact.
Consider the metric space where is the Euclidean metric and consider the set . We claim that this set is not compact. To show that is not compact, we need to find an open covering of that does not have a finite subcovering. Consider the following open covering:
Clearly is an infinite subcovering of and furthermore:
Let be a finite subset of containing elements. Then:
Let . Then due to the nesting of the open covering , we see that:
But for we need . But , so and , so . Therefore any finite subset of cannot cover . Hence, is not compact.
Boundedness of Compact Sets in a Metric Space
Recall that if is a metric space then a subset is said to be compact in if for every open covering of there exists a finite subcovering of .
We will now look at a rather important theorem which will tell us that if is a compact subset of then we can further deduce that is also a bounded subset.
Theorem 1: If be a metric space and is a compact subset of then is bounded.
- Proof: For a fixed and for , consider the ball centered at with radius , i.e., . Let denote the collection of balls centered at with varying radii :
- It should not be hard to see that is an open covering of , since for all we have that , so .
- Now since is compact and since is an open covering of , there exists a finite open subcovering subset that covers . Since is finite, we have that:
- And by definition covers so:
- Each of the open balls in the open subcovering is centered at with . Since the set is a finite set, there exists a maximum value. Let:
- Then for all we have that and therefore:
- Hence is bounded.
Licensing
Content obtained and/or adapted from:
- Compact Sets in a Metric Space, mathonline.wikidot.com under a CC BY-SA license