Difference between revisions of "Single Transformations of Functions"
| Line 14: | Line 14: | ||
Given a function <math> f(x) </math>, a new function <math> g(x) = f(-x) </math> is a horizontal reflection of the function <math> f(x) </math>, sometimes called a reflection about the y-axis. For example, <math> g(x) = e^{-x} </math> is a horizontal reflection of the function <math> f(x) = e^x </math>. | Given a function <math> f(x) </math>, a new function <math> g(x) = f(-x) </math> is a horizontal reflection of the function <math> f(x) </math>, sometimes called a reflection about the y-axis. For example, <math> g(x) = e^{-x} </math> is a horizontal reflection of the function <math> f(x) = e^x </math>. | ||
| + | |||
| + | ===Even and Odd Functions=== | ||
| + | A function f is even if for all values of x, <math> f(x) = f(-x) </math>; that is, a function <math> f(x) </math> is even if its horizontal reflection <math> f(-x) </math> is identical to itself. For example, <math> f(x) = x^2 </math> is an even function since <math> f(-x) = (-x)^2 = (-1)^2(x)^2 = x^2 = f(x)</math>. | ||
| + | |||
| + | A function f is odd if for all values of x, <math> f(x) = -f(-x) </math>; that is, a function <math> f(x) </math> is odd if a horizontal reflection and vertical reflection of the function results in the same function. For example, <math> f(x) = x^3 </math> is an odd function since <math> -f(-x) = -(-x)^3 = (-1)(-1)^3(x)^3 = x^3 = f(x)</math>. | ||
==Resources== | ==Resources== | ||
* [https://courses.lumenlearning.com/wmopen-collegealgebra/chapter/introduction-transformations-of-functions/ Intro to Transformations of Functions], Lumen Learning | * [https://courses.lumenlearning.com/wmopen-collegealgebra/chapter/introduction-transformations-of-functions/ Intro to Transformations of Functions], Lumen Learning | ||
* | * | ||
Revision as of 18:14, 15 September 2021
Introduction
Translations
One kind of transformation involves shifting the entire graph of a function up, down, right, or left. The simplest shift is a vertical shift, moving the graph up or down, because this transformation involves adding a positive or negative constant to the function. In other words, we add the same constant to the output value of the function regardless of the input. For a function , the function is shifted vertically k units. For example, is the function shifted up by 4 units. is the function shifted down by 7.7 units.
Given a function f, a new function , where h is a constant, is a horizontal shift of the function f. If h is positive, the graph will shift h units to the right. If h is negative, the graph will shift h units to the left. For example, is the graph of shifted 3 units to the right. is the function shifted units to the left.
Reflections
Given a function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) } , a new function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x) = -f(x) } is a vertical reflection of the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) } , sometimes called a reflection about (or over, or through) the x-axis. For example, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x) = -\sqrt{x} } is a vertical reflection of the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \sqrt{x}} .
Given a function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) } , a new function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x) = f(-x) } is a horizontal reflection of the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) } , sometimes called a reflection about the y-axis. For example, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x) = e^{-x} } is a horizontal reflection of the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = e^x } .
Even and Odd Functions
A function f is even if for all values of x, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = f(-x) } ; that is, a function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) } is even if its horizontal reflection Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(-x) } is identical to itself. For example, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = x^2 } is an even function since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(-x) = (-x)^2 = (-1)^2(x)^2 = x^2 = f(x)} .
A function f is odd if for all values of x, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = -f(-x) } ; that is, a function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) } is odd if a horizontal reflection and vertical reflection of the function results in the same function. For example, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = x^3 } is an odd function since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -f(-x) = -(-x)^3 = (-1)(-1)^3(x)^3 = x^3 = f(x)} .
Resources
- Intro to Transformations of Functions, Lumen Learning