Difference between revisions of "Laplace Transform"
Jump to navigation
Jump to search
| Line 22: | Line 22: | ||
| <math> \cosh{at} </math> || <math> \frac{s}{s^2-a^2} </math> | | <math> \cosh{at} </math> || <math> \frac{s}{s^2-a^2} </math> | ||
|- | |- | ||
| − | | <math> e^{at}\sin{bt} </math> || <math> | + | | <math> e^{at}\sin{bt} </math> || <math> \frac{b}{(s-a)^2+b^2} </math> |
|- | |- | ||
| − | | <math> e^{at}\cos{bt} </math> || <math> | + | | <math> e^{at}\cos{bt} </math> || <math> \frac{s-a}{(s-a)^2+b^2} </math> |
|- | |- | ||
| − | | <math> e^{at}\sinh{bt} </math> || <math> | + | | <math> e^{at}\sinh{bt} </math> || <math> \frac{b}{(s-a)^2-b^2} </math> |
|- | |- | ||
| − | | <math> e^{at}\cosh{bt} </math> || <math> | + | | <math> e^{at}\cosh{bt} </math> || <math> \frac{s-a}{(s-a)^2-b^2} </math> |
|} | |} | ||
==Resources== | ==Resources== | ||
* [https://tutorial.math.lamar.edu/classes/de/LaplaceIntro.aspx Laplace Transforms], Paul's Online Notes | * [https://tutorial.math.lamar.edu/classes/de/LaplaceIntro.aspx Laplace Transforms], Paul's Online Notes | ||
Revision as of 16:15, 20 September 2021
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^{n} } | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{n!}{s^{n+1}} } |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^{n}e^{at} } | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{n!}{s^{n+1}} } |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin{at} } | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{a}{s^2+a^2} } |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos{at} } | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{s}{s^2+a^2} } |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sinh{at} } | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{a}{s^2-a^2} } |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cosh{at} } | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{s}{s^2-a^2} } |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{at}\sin{bt} } | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{b}{(s-a)^2+b^2} } |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{at}\cos{bt} } | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{s-a}{(s-a)^2+b^2} } |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{at}\sinh{bt} } | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{b}{(s-a)^2-b^2} } |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{at}\cosh{bt} } | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{s-a}{(s-a)^2-b^2} } |
Resources
- Laplace Transforms, Paul's Online Notes