Difference between revisions of "Remainder and Factor Theorem"
Jump to navigation
Jump to search
(Created page with "The polynomial division algorithm is as follows: suppose d(x) and p(x) are nonzero polynomials where the degree of p(x) is greater than or equal to the degree of d(x). Then th...") |
|||
Line 9: | Line 9: | ||
==Resources== | ==Resources== | ||
* [https://math.libretexts.org/Bookshelves/Precalculus/Book%3A_Precalculus_(StitzZeager)/03%3A_Polynomial_Functions/3.02%3A_The_Factor_Theorem_and_the_Remainder_Theorem The Factor Theorem and Remainder Theorem], Mathematics LibreTexts | * [https://math.libretexts.org/Bookshelves/Precalculus/Book%3A_Precalculus_(StitzZeager)/03%3A_Polynomial_Functions/3.02%3A_The_Factor_Theorem_and_the_Remainder_Theorem The Factor Theorem and Remainder Theorem], Mathematics LibreTexts | ||
+ | * [https://tutorial.math.lamar.edu/classes/alg/dividingpolynomials.aspx Dividing Polynomials], Paul's Online Notes |
Revision as of 13:23, 22 September 2021
The polynomial division algorithm is as follows: suppose d(x) and p(x) are nonzero polynomials where the degree of p(x) is greater than or equal to the degree of d(x). Then there exist two unique polynomials, q(x) and r(x), such that p(x) = d(x)q(x) + r(x), where either r(x) = 0 or the degree of r(x) is strictly less than the degree of d(x).
Remainder Theorem: Suppose p(x) is a polynomial of degree at least 1 and c is a real number. When p(x) is divided by x − c the remainder is p(c).
- Proof: By the division algorithm, p(x) = (x - c)q(x) + r, where r must be a constant since d(x) = x - c has a degree of 1. p(x) = (x - c)q(x) + r must hold for all values of x, so we can set x = c and get that p(c) = (c - c)q(x) + r = r. Thus the remainder r = p(c).
Factor Theorem: Suppose p(x) is a nonzero polynomial. The real number c is a zero of p if and only if (x − c) is a factor of p(x).
- By the division algorithm, x - c is a factor of p(x) if and only if r = 0. So, since p(c) = r when p(x) is divided by x - c, x - c is a factor of p(x) if and only if p(c) = 0; that is, if c is a zero of p(x).
Resources
- The Factor Theorem and Remainder Theorem, Mathematics LibreTexts
- Dividing Polynomials, Paul's Online Notes